机构地区:[1]Department of Pharmacy,Affiliated Wuxi Peoples Hospital,Nanjing Medical University [2]Department of Pharmaceutical Sciences,Shenyang Pharmaceutical University [3]School of Pharmacy,Nanjing Medical University [4]Department of Colorectal Surgery,The First Affiliated Hospital of Nanjing Medical University
出 处:《The Journal of Biomedical Research》2017年第5期395-407,共13页生物医学研究杂志(英文版)
基 金:supported by grants from the National Natural Science Foundation of China (21303086);the Natural Science Foundation of Jiangsu Province (BK20130884);the Research Fund for Doctoral Program of Higher Education (20123234120012)
摘 要:Ursolic acid(UA) and oleanolic acid(OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin(β-CD) and compare the solubility and intermolecular force of β-CD with the two isomeric triterpenic acids. The host-guest interaction was explored in liquid and solid state by ultraviolet-visible absorption,1H NMR, phase solubility analysis, and differential scanning calorimetry, X-ray powder diffractometry, and molecular modeling studies. Both experimental and theoretical studies revealed that β-CD formed 1: 1 water soluble inclusion complexes and the complexation process was naturally favorable. In addition, the overall results suggested that ring E with a carboxyl group of the drug was encapsulated into the hydrophobic CD nanocavity. Therefore, a clear different inclusion behavior was observed, and UA exhibited better affinity to β-CD compared with OA in various media due to little steric interference, which was beneficial to form stable inclusion complex with β-CD and increase its water solubility effectively.Ursolic acid(UA) and oleanolic acid(OA) are insoluble drugs. The objective of this study was to encapsulate them into β-cyclodextrin(β-CD) and compare the solubility and intermolecular force of β-CD with the two isomeric triterpenic acids. The host-guest interaction was explored in liquid and solid state by ultraviolet-visible absorption,~1H NMR, phase solubility analysis, and differential scanning calorimetry, X-ray powder diffractometry, and molecular modeling studies. Both experimental and theoretical studies revealed that β-CD formed 1: 1 water soluble inclusion complexes and the complexation process was naturally favorable. In addition, the overall results suggested that ring E with a carboxyl group of the drug was encapsulated into the hydrophobic CD nanocavity. Therefore, a clear different inclusion behavior was observed, and UA exhibited better affinity to β-CD compared with OA in various media due to little steric interference, which was beneficial to form stable inclusion complex with β-CD and increase its water solubility effectively.
关 键 词:Β-CYCLODEXTRIN oleanolic acid ursolic acid host-guest interaction molecular modeling
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...