检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘威[1] 张东霞[1] 丁玉成 吴茜[1] 邓春宇[1] 刘道伟[1] LIU Wei ZHANG Dongxia DING Yucheng WU Qian DENG Chunyu LIU Daowei(China Electric Power Research Institute, Haidian District, Beijing 100192, China)
机构地区:[1]中国电力科学研究院,北京市海淀区100192
出 处:《中国电机工程学报》2017年第20期5893-5901,共9页Proceedings of the CSEE
基 金:国家电网公司科技项目(XT71-15-056)~~
摘 要:电网薄弱环节辨识对保证电力系统的安全性有重要的意义。为了分析辨识电网薄弱环节,提出一种随机矩阵理论与熵理论相结合的辨识方法。首先介绍随机矩阵理论基本原理和薄弱环节特征。然后利用电压数据和相角数据构建矩阵,结合随机矩阵理论分析矩阵的统计特性,并将统计特性与电网物理特性对比分析。再结合熵理论建立薄弱节点辨识模型,利用变异系数量化分析数据波动特征,构建薄弱支路辨识模型。最后,利用IEEE39节点系统模型验证方法的正确性。Power grid vulnerability identification is great significance for guaranteeing power system security. The method of combining the random matrix theory with entropy theory was put forward to identify weak links which endanger power system security. Firstly, the fundamental principles of the random matrix theory and the characteristics of power system security weak link were introduced. Secondly, random matrix based on voltage and phase angle data was constructed and its statistical properties was analyzed and compared with physical properties. Thirdly, based on entropy theory, weak node and branch identification model was established. Data fluctuation characteristics can be quantitatively estimated according to variation coefficient. Finally, case study based on IEEE 39 node system validates the proposed approach.
关 键 词:电网薄弱环节辨识 数据驱动 随机矩阵理论 熵理论 中心极限定理 变异系数
分 类 号:TM71[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200