新闻发布会汉英口译中的政府形象构建——以人称代词we的搭配词为例  被引量:16

The Construction of Governmental Image in Chinese Government Press Conference Interpreting:A Case Study of the Collocational Patterns of We

在线阅读下载全文

作  者:潘峰 黑黟 

机构地区:[1]华中科技大学外国语学院,湖北武汉430074 [2]上海交通大学外国语学院,上海200240

出  处:《外语与外语教学》2017年第5期45-51,72,共8页Foreign Languages and Their Teaching

基  金:国家社科基金项目"基于语料库的中央政治文献英译研究"(项目编号:16BYY012)的阶段性成果

摘  要:长期以来,对双语转换语境中形象构建的研究多局限于笔译文本。本研究利用语料库方法,拟考察新闻发布会汉英口译中的典型搭配行为及其所折射的政府和领导人形象。研究选取第一人称代词we作为考察的节点词,并以美国记者新闻发布会原创文本进行对比。研究发现:其一,口译文本中we与典型搭配词共现时通常以"外排"式用法出现,专指作为行为主体的领导人或政府,但有时亦频繁以"内包"式用法与个别高频词搭配,此时则有特殊含义;其二,we在口译文本中明显倾向于与高确信度的感知动词、频繁且正式性的意愿动词、以及蕴含积极语义趋向的特有动词进行搭配,系统性地构建了政府领导人真诚自信、奋发图强、不断探索进步的主观形象。本研究表明基于语料库的搭配分析是研究话语塑造与形象建构的有效工具。Researches on image building in bilingual contexts have mostly been confined to w ritten texts.This article aims to explore the relationship between typical collocational behavior and the building of government leaders'image in Chinese government press conference interpreting based on corpus approach.To this aim,the first person pronoun we was chosen as the keyword for analysis and a comparison was made with that in the American government press conference texts.The results show that:first,we usually co-occurs with collocates in its exclusive use,referring to the leaders or the Chinese government,but it also appears in its inclusive use with certain collocates where special implications arise;second,we in interpreted texts significantly prefer to collocate with high-confidence sensory verbs,formal and frequently volitive verbs,and a set of distinctive verbs with clearly positive semantic preference,which collectively contribute to shaping an image of confidence,sincerity and enterprise for government leaders.This study has show n that corpus-based collocational analysis is an effective approach for studying discourse shaping and image building.

关 键 词:搭配词共现 新闻发布会汉英口译 形象 语料库 

分 类 号:H0[语言文字—语言学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象