检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南师范大学计算机与信息工程学院,河南新乡453007 [2]河南师范大学计算智能与数据挖掘河南省高校工程技术研究中心,河南新乡453007
出 处:《河南师范大学学报(自然科学版)》2017年第6期91-99,共9页Journal of Henan Normal University(Natural Science Edition)
基 金:河南省重点科技攻关项目(132102110209);河南省基础与前沿技术研究计划项目(142300410295)
摘 要:为了提高粒子群优化算法(Particle swarm optimization,PSO)的优化效率,降低其陷入局部最优的概率,提出了一种融合榜样学习和反向学习的PSO算法(PSO based on combing Example learning and Opposition learning,EOPSO).首先,对粒子群中的非最优粒子采用新颖的榜样学习机制更新,以便提高全局搜索能力,避免算法陷入局部最优;其次,对粒子群中最优粒子采用反向学习混合机制更新,提升该粒子的搜索能力,进一步避免算法陷入局部最优;最后,对粒子群中的最优粒子还采用了自身变异机制更新,有利于搜索前期的全局搜索和后期的快速收敛.在15个不同维度的基准函数上进行了仿真实验,实验结果表明,与最先进的PSO改进算法ELPSO、SRPSO、LFPSO、HCLPSO相比,EOPSO优化性能更好.In order to improve the optimization efficiency of the particle swarm optimization algorithm and prevent the al-gorithm from trapping into the local optima. Based on combing Example learning and Opposition learning (EOPSO). This pa-per proposes a PSO Firstly, all non-optimal particles in the particle swarm are updated by a novel example learning mechanism to improve their search ability and to prevent the algorithm from trapping into the local optima. Secondly, the optimal particle is updated by a hybrid opposition learning way to improve its search ability and further avoid the algorithm^ trapping into the local optima. Finally, a self-mutation mechanism is also adopted to update the optimal particle to increase the population diver-sity. In addition, the self-mutation mechanism adopts an adaptive mutation rate to provide the good global search ability at the early search phase and accelerate the convergence speed at the late search phase in the algorithm process. The simulation experi-ments are made on 15 benchmark functions with different dimensions. The experiment results show that, compared with the state-of-the-art PSO variants such as ELPSO, SRPSO, LFPSO and HCLPSO, EOPSO obtains better optimization perform-ance.
关 键 词:智能优化算法 粒子群优化算法 榜样学习 反向学习
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.199.201