水下高速目标声谱图特征提取及分类设计  被引量:6

Feature Extraction and Classification of Spectrum of Radiated Noise of Underwater High Speed Vehicle

在线阅读下载全文

作  者:王森[1] 王余 王易川[1] 李海涛[1] 

机构地区:[1]海军潜艇学院 [2]中国人民解放军31001部队

出  处:《电子与信息学报》2017年第11期2684-2689,共6页Journal of Electronics & Information Technology

摘  要:为了增加水下高速目标的识别特征维度,优化识别效果,该文设计了一种基于目标辐射噪声高速特征量(High Speed Characteristic Quantity,HSCQ)的分类方法。首先,针对水下高速目标辐射噪声的DEMON(Detection of Envelope Modulation On Noise)谱特征进行分析,根据DEMON谱的频率可分性,定义了DEMON谱调制分布比(Modulation Distribution Ratio,MDR)。然后,根据水下高速目标辐射噪声的功率谱历程图直纹特征,应用图像边缘检测、线谱生长等理论进行特征提取,并分析了功率谱历程图的直纹特征量(Straight-line Characteristic Quantity of Spectrum,SCQS)。最后,根据2种特征量的实测信号分析结果,定义了目标辐射噪声的HSCQ,实现了一种新的水下高速目标分类方法。实测信号分析结果显示,采用MDR或SCQS进行单特征量分类,非高速目标的误报率分别为21.4%和16.3%;采用HSCQ进行分类,非高速目标的误报率仅为4.1%。In order to improve the result of underwater high speed vehicle classification, a classification method that is based on High Speed Characteristic Quantity(HSCQ) of vehicle radiated noise is designed. Firstly, analysis of Detection of Envelope Modulation On Noise(DEMON) spectrum of actual measured radiated noise is finished. The Modulation Distribution Ratio(MDR) of radiated noise is defined based on the separability of modulation frequency of DEMON spectrum. Then the spectrograms feature analysis and feature extraction of underwater high speed radiated noise are done based on image edge detection and edge growing. The Straight-line Characteristic Quantity of Spectrum(SCQS) of vehicle radiated noise is analyzed. Finally, considering the analysis results of two types of characteristic quantity, a new classification method of underwater high speed vehicle is realized and HSCQ of vehicle radiated noise is designed. The actual measured radiated noise analysis shows that, the false alarm rate of non-high speed vehicle is respectively 21.4%(only using MDR), 16.3%(only using SCQS), and 4.1%(using HSCQ).

关 键 词:水下高速目标 声谱图 调制分布比 直纹特征量 

分 类 号:TB56[交通运输工程—水声工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象