检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:初秋博 赵毅[2] 刘燕隔 张元竹 周毓麟[1] CHU Qiu-bo ZHAO Yi LIU Yan-ge ZHANG Yuan-zhu ZHOU Yu-lin(College of Life Science, Jilin University, Changchun 130021, China Department of Orthopedic Trauma, The First Noman Bethune Hospital of Jilin University, Changehun 130021, China)
机构地区:[1]吉林大学生命科学学院,长春130021 [2]吉林大学白求恩第一医院创伤骨科,长春130021
出 处:《药物分析杂志》2017年第10期1904-1909,共6页Chinese Journal of Pharmaceutical Analysis
基 金:吉林省科技重点项目(No.20150203002NY;20160204029YY)
摘 要:目的:采用偏最小二乘法结合近红外光谱技术建立分析牛樟芝发酵菌丝体中多糖和三萜含量的泛化能力强且预测精度高的定量分析模型,以满足牛樟芝原料药及其相关产品实际检测中的应用。方法:通过扫描化学诱变和液体深层发酵获得的165个牛樟芝菌丝体样品获得近红外光谱,采用常规方法测定样品中多糖和三萜的含量。应用蒙特卡罗偏最小二乘法识别异常样品并确定校正集样品数量为基础,以逼近度(Da)为评价指标,采用可移动窗口偏最小二乘法对特征波长变量、最佳光谱预处理方法及建立模型的重要参数进行筛选。结果:最终确定牛樟芝菌丝体中多糖和三萜的校正集和预测集样品实验测定值与预测值间相关系数(Rc和Rp)分别为0.931 1 g·g^(-1)和0.995 9 g·g^(-1)、0.927 9 g·g^(-1)和0.943 4 g·g^(-1);均方根误差(RMSEC和RMSEP)分别为0.031 33 g·g^(-1)和0.010 72 g·g^(-1)、0.031 34 g·g^(-1)和0.012 02 g·g^(-1)。结论:该模型具有很好的预测性能。Objective:Near infrared spectroscopy combined with partial least squares was used to establish quantitative model for polysaccharide and triterpene in mycelia of Antrodia camphorata with strong generalization ability and high prediction precision,which could satisfy the practical test of raw materials and related products of Antrodia camphorata.Methods:NIR spectra of 165 samples treated by chemical mutagenesis and liquid fermentation were obtained and the contents of polysaccharide and triterpene were determined by conventional methods.Monte Carlo partial least squares was applied to identify abnormal samples and to define the number of calibration samples.Then the characteristic wavelengths,the spectral pretreatment methods and the key modeling parameters were optimized based on the degree of approximation(Da)by moving window partial least square filter.Results:The calibration and prediction correlation coefficient(Rc and Rp)for polysaccharide were 0.931 1 g·g-1 and 0.995 9 g·g-1,respectively.And those for triterpene were 0.927 9 g·g-1 and 0.943 4 g·g-1,respectively.The root mean square errors of calibration and prediction(RMSEC and RMSEP)were 0.031 33 g·g-1 and 0.010 72 g·g-1 for polysaccharide and 0.031 34 g·g-1 and 0.012 02 g·g-1 for triterpene,respectively.Conclusion:The models had good prediction performance.
关 键 词:光谱学 近红外光谱 偏最小二乘法 牛樟芝 发酵菌丝体 多糖 三萜类化合物
分 类 号:R917[医药卫生—药物分析学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.241.63