胶体光子晶体膜的超浸润性研究进展  被引量:5

Research Progress on the Super-wettability of Colloidal Photonic Crystals

在线阅读下载全文

作  者:崔丽影[1] 范莎莎 于存龙 邝旻翾 王京霞[2,3] 

机构地区:[1]吉林农业大学资源与环境学院,长春130118 [2]中国科学院理化技术研究所仿生材料与界面科学院重点实验室,北京100190 [3]中国科学院大学未来技术学院仿生材料与界面教研室,北京100049

出  处:《化学学报》2017年第10期967-978,共12页Acta Chimica Sinica

基  金:国家自然科学基金(Nos.51403076;51673207;51503214;51373183)资助~~

摘  要:近年来,由于具有特殊浸润性的胶体光子晶体膜在传感、检测、催化等方面的重要应用,胶体光子晶体膜的超浸润研究受到科研工作者的广泛关注.本文阐述了包括超亲液、超疏液、两亲性、梯度浸润性、可调控浸润性、图案浸润性等具有特殊浸润性光子晶体膜的制备及其相关应用,并讨论疏水、超疏水和亲-疏图案不同浸润性基底对所制备胶体光子晶体膜的功能性及其相关应用的影响.该工作对于发展新型功能型材料器件的制备具有重要的借鉴及指导意义.In recent years, the wettability of colloidal PCs has attracted much interest from researchers due to potential applications in printing, sensor, microfluidics and so on. In this paper, we present two kinds of research work related to PCs' wettability. On the one hand, the functional colloidal PCs have been fabricated from the modification of its wettability. Where, the wettability of PCs can be modified from superhydrophilic, superhydrophobic, amphiphilic, gradient wettability, controllable wettability and patterned wettability. Wettability is an important property of solid surface and can be generally controlled mainly by its surface chemical composition and surface topographic structure. Surface chemical composition determines surface free energy(i.e., hydrophilicity/hydrophobicity), while the surface topographic structure can amplify hydrophilicity or hydrophobicity, based on the Wenzel and modified Cassie equation. Thus, PCs with specific wettability have been fabricated based on their intrinsic, well-ordered surface topographic structure, and chemical composition. The superhydrophilic and superhydrophobic PCs have been achieved based on the amplification effect of the surface well-ordered topographic structure. The gradient PCs have been fabricated by changing the topographic structure. The PCs with controllable wettability can be obtained when introducing a responsive group onto PCs' surface. The underwater oil-adhesion properties of PCs have been controlled by varying the latex from spherical or cauliflower-like to single cavity. On the other hand, functional PCs are fabricated from the substrate with specific wettability. Typically, high-quality and crack free PCs are achieved from superhydrophobic substrate, pattern PCs from the hydrophilic-hydrophobic substrate, PC dome with excellent wide-angle property is fabricated from hydrophobic substrate. Otherwise, gas-liquid or liquid-liquid interface has also been included as a special substrate for the fabrication of functional PCs, such as flower-sh

关 键 词:特殊浸润性 胶体光子晶体 制备 功能性 应用 

分 类 号:O647.1[理学—物理化学] TB34[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象