复合衰落信道下基于删余的多天线协作频谱感知  被引量:1

Sensor-Based Cooperative Spectrum Sensing with Multiple Antennas over Composite Fading Channels

在线阅读下载全文

作  者:李美玲[1] 贺文丽 董增寿[1] 路兆铭[2] LI Mei-ling HE Wen-li DONG Zeng-shou LU Zhao-ming(School of Electronics and Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China)

机构地区:[1]太原科技大学电子信息工程学院,太原030024 [2]北京邮电大学信息与通信工程学院,北京100022

出  处:《北京邮电大学学报》2017年第4期29-34,共6页Journal of Beijing University of Posts and Telecommunications

基  金:国家自然科学基金项目(41272374);山西省青年科技研究基金项目(2014021021-2);太原科技大学博士科研项目(20122032)

摘  要:提出了一种基于删余的多天线协作频谱感知(C-MA-CSS),利用混合伽马分布推导了感知信道为复合衰落信道时C-MA-CSS的检测率、漏检率、虚警率和次系统容量的闭合表达式,并分析了它们与天线数的关系,给出了使次系统容量最大化的优化算法.仿真结果表明,相比非删余的CSS而言,一方面C-MA-CSS能够明显降低漏检率;另一方面,随着天线数的增多,次系统容量先增大后趋于平稳,采用优化算法可以在确保主用户受到足够保护的前提下,利用较少的天线数实现优化的次系统容量.The censor-based cooperative spectrum sensing with multiple antennas( C-MA-CSS) was proposed,the closed-form expressions for the detection probability,miss-detection probability,the false-alarm probability and the secondary throughput were derived using the mixture Gamma distribution under the composite fading sensing channels. Then,the relationships between them and the number of antennas were analyzed,and the optimal algorithm for maximizing the secondary throughput was also given. Simulation results demonstrated that lower miss-detection probability can be achieved in C-MA-CSS compared to the non-censoring CSS. Besides,the secondary throughput monotonically increased rapidly first and slowly after. Meanwhile,optimal secondary throughput can be achieved with smaller number of antennas by the proposed algorithm while maintaining the target detection probability.

关 键 词:多天线协作频谱感知 复合衰落信道 混合伽马分布 检测性能 次系统容量 

分 类 号:TN92[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象