Optimization of SnS active layer thickness for solar cell application  被引量:2

Optimization of SnS active layer thickness for solar cell application

在线阅读下载全文

作  者:Yashika Gupta P.Arun 

机构地区:[1]Department of Electronic Science, University of Delhi-South Campus, Benito Juarez Marg, Delhi 110021, India [2]Material Science Research Lab, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007, India

出  处:《Journal of Semiconductors》2017年第11期15-21,共7页半导体学报(英文版)

基  金:DST(India) for the financial assistance in terms of fellowship under the INSPIRE program(Fellowship No.IF131164)

摘  要:This work presents a comparative study of n-SnS and p-SnS active layers for increased solar cell efficiency. Tin sulphide thin films of various thicknesses having p-type and n-type conductivity were fabricated by thermal evaporation. Both type of films had the same(113) orientation of the crystal planes with a constant tensile strain of ~ 0.003 and ~ 0.011, respectively. The persistent photocurrent was observed in all n-SnS and p-SnS samples with the current's time decay constant decreasing with increasing film thickness. Hole mobility of thicker p-SnS films was found to be greater than the electron mobility in n-SnS samples, with mobility(both hole and electron) showing an increasing trend with film thickness. The optimum absorber layer thickness for both p-and n-SnS layers should have a high value of diffusion length for a given absorption coefficient and band-gap.This work presents a comparative study of n-SnS and p-SnS active layers for increased solar cell efficiency. Tin sulphide thin films of various thicknesses having p-type and n-type conductivity were fabricated by thermal evaporation. Both type of films had the same(113) orientation of the crystal planes with a constant tensile strain of ~ 0.003 and ~ 0.011, respectively. The persistent photocurrent was observed in all n-SnS and p-SnS samples with the current's time decay constant decreasing with increasing film thickness. Hole mobility of thicker p-SnS films was found to be greater than the electron mobility in n-SnS samples, with mobility(both hole and electron) showing an increasing trend with film thickness. The optimum absorber layer thickness for both p-and n-SnS layers should have a high value of diffusion length for a given absorption coefficient and band-gap.

关 键 词:thin film chalcogenides optical properties 

分 类 号:TM914.4[电气工程—电力电子与电力传动]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象