Spatial distribution modeling of temperature increase for the uplifted mountain terrains and its characteristics in Southwest China  被引量:2

Spatial distribution modeling of temperature increase for the uplifted mountain terrains and its characteristics in Southwest China

在线阅读下载全文

作  者:WANG Yan-xia DING Kun LI Mao-biao ZHOU Ru-liang 

机构地区:[1]Yunnan Academy of Biodiversity, Southwest Forestry University [2]Faculty of Sciences, Southwest Forestry University [3]School of Geography, Southwest Forestry University

出  处:《Journal of Mountain Science》2017年第11期2270-2283,共14页山地科学学报(英文)

基  金:supported by the National Natural Science Foundation of China (Grant No. 41561004);the Forestry Industry Research Special Funds for Public Welfare Projects of China (Grant No. 21404402-2);the Scientific and Technological Innovation Talent Project of Yunnan Province (Grant No. 2014HC014)

摘  要:Local temperature changes in mountain areas are significantly affected by the uplifted mountain terrains. Understanding how temperature increase with mountain terrains is an important component in accurately modeling the spatial distribution of temperature. The study, after minimizing the effect of elevation and latitude, quantitatively simulated the temperature increase in the uplifted mountain terrains, described the characteristics in the spatial distribution of warming areas with different magnitudes, and identified the correlated indices of mountain bodies for warming. Selecting Yunnan Province in southwest China as the study area, we simulated the warming field on a baseline surface at the average elevation of 2000 m and average latitude of 24.96°. The results indicated that the warming magnitudes in different local areas varied with the change in the spatial locations, and the warming process concentrated in the mountainous regions. Throughout the entire study area, the warming field presented a general pattern of three terraces from the regions of high mountains to middle mountains and then low mountains. The areasof high warming magnitude mainly surrounded large mountain bodies and were distributed on the upper part. The areas of low warming magnitude clustered in the valleys and basins of the middle mountain region, mostly on the lower part of the large mountain bodies and its branches. The areas with zero warming magnitude occurred in the low mountains and broad valleys, which were distributed largely on the lower parts of the middle mountains and in most of the valleys. Quantified sampling analysis demonstrated good positive correlation between the warming magnitudes in uplifted mountain terrains and the volume index of the mountain body, as well as elevation difference, with the coefficients corresponding to 0.82 and 0.91, respectively.Local temperature changes in mountain areas are significantly affected by the uplifted mountain terrains. Understanding how temperature increase with mountain terrains is an important component in accurately modeling the spatial distribution of temperature. The study, after minimizing the effect of elevation and latitude, quantitatively simulated the temperature increase in the uplifted mountain terrains, described the characteristics in the spatial distribution of warming areas with different magnitudes, and identified the correlated indices of mountain bodies for warming. Selecting Yunnan Province in southwest China as the study area, we simulated the warming field on a baseline surface at the average elevation of 2000 m and average latitude of 24.96°. The results indicated that the warming magnitudes in different local areas varied with the change in the spatial locations, and the warming process concentrated in the mountainous regions. Throughout the entire study area, the warming field presented a general pattern of three terraces from the regions of high mountains to middle mountains and then low mountains. The areasof high warming magnitude mainly surrounded large mountain bodies and were distributed on the upper part. The areas of low warming magnitude clustered in the valleys and basins of the middle mountain region, mostly on the lower part of the large mountain bodies and its branches. The areas with zero warming magnitude occurred in the low mountains and broad valleys, which were distributed largely on the lower parts of the middle mountains and in most of the valleys. Quantified sampling analysis demonstrated good positive correlation between the warming magnitudes in uplifted mountain terrains and the volume index of the mountain body, as well as elevation difference, with the coefficients corresponding to 0.82 and 0.91, respectively.

关 键 词:Uplifted MOUNTAIN terrains Temperature INCREASE BASELINE surface Highwarming MAGNITUDE Remote sensing retrieval 

分 类 号:P461.3[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象