基于动态联盟的多传感器协同探测与跟踪  被引量:1

Multi-sensor Cooperative Detection and Tracking Based on Dynamic Coalition

在线阅读下载全文

作  者:武龙[1] 许蕴山[1] 夏海宝[1] 邓有为[1] 张肖强[1] 

机构地区:[1]空军工程大学航空航天工程学院,陕西西安710038

出  处:《红外技术》2017年第11期996-1000,共5页Infrared Technology

基  金:国家自然科学基金项目(61379104);航空科学基金项目(20155596024)

摘  要:在空战场协同攻击中,常涉及到多传感器协同探测及跟踪,由于目标的出现与消失具有随机性,所以在协同中既要考虑已有目标的跟踪,更要重视新生目标的及时探测和捕获。为此,建立了新生目标的探测概率模型,并阐述了不同传感器联盟对新生目标的探测能力,依据后验克拉美-罗下界(Posterior Cramer-Rao Lower Bound,PCRLB)对已跟踪目标组建传感器联盟,利用二值粒子群优化(Binary Particle Swarm Optimization,BPSO)算法及PCRLB研究基于动态联盟的多传感器协同探测与跟踪方法。仿真表明,该方法跟踪精度较高,误差小且稳定。In cooperative attacks, multi-sensor cooperative detection and tracking is usually used. Because targets randomly appear or vanish, we should think about tracking new appearing targets and pay attention to detect or even capture new targets. Therefore, a probabilistic model for detecting new targets was established, stating the ability of different sensor coalitions to detect new targets. A sensor coalition for tracked targets was set up according to PCRLB, and the method of multi-sensor cooperative detection and tracking based on dynamic coalition using the BPSO algorithm and PCRLB was studied. The simulation result indicates that the method possesses higher tracking precision, less error, and more stability.

关 键 词:协同跟踪 动态联盟 后验克拉美.罗下界 二值粒子群优化 

分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象