机构地区:[1]成都信息工程大学大气科学学院高原大气与环境四川省重点实验室,成都610225 [2]南京信息工程大学气象灾害预报预警与评估协同创新中心,南京210044 [3]中国科学院大气物理研究所中国科学院云降水物理与强风暴重点实验室,北京100029 [4]中国科学院大学,北京100049
出 处:《大气科学》2017年第6期1246-1263,共18页Chinese Journal of Atmospheric Sciences
基 金:国家重点基础研究发展计划(973计划)项目2014CB441401;北京市自然科学基金重点项目8141002;四川省教育厅项目16CZ0021;国家科技支撑计划项目2015BAC03B00;成都信息工程大学气象科普基地示范项目2017KZ0015~~
摘 要:为了解雷暴单体内部水成物粒子分布结构及演变过程,综合X波段双线偏振天气雷达的参量及环境温度参数,结合小波去噪和自适应约束算法进行资料预处理后,基于模糊逻辑算法对北京一个结构演变相对完整的典型雷暴单体内水成物粒子分布随时间演变特征进行系统的分析,得到如下结果:(1)按雷暴单体的宏观特征将其演变过程分为发展、成熟和消散阶段。三个阶段中单体平均高度分别为11、12、10 km;回波强度最大可达40~45 d BZ、大于50 d BZ和40~45 d BZ;霰粒子占各自阶段单体内所有粒子百分比分别为2%、12%和1%。(2)各阶段主要微物理过程及演变特征是:发展阶段,单体0°C层以下由暖云过程主导,毛毛雨占5%,雨滴占24%;少量液态粒子上升至0°C层以上与冰晶反应生成1%干霰,冷云过程较弱。成熟阶段,相较发展阶段0°C层以下毛毛雨减少约2个百分点,雨滴增多约2个百分点,粒子碰并加强,暖云过程增强;较多液态粒子上升至0°C层以上,约有4%的雨滴与5%的冰晶通过凇附作用生成7%的霰,冷云过程增强。消散阶段,下层液态粒子难以上升至0°C层以上形成初始冰晶,使暖云及冷云过程都减弱,0°C层以下毛毛雨相较成熟阶段平均增多约1个百分点,粒子碰并减弱;0°C层以上冰晶消耗减少2个百分点,霰生成减少5个百分点。(3)基于雷暴单体内各类水成物粒子分布、演变及其动力场背景特征建立了雷暴单体演变过程微物理模型。本文研究有助于加深对典型雷暴单体内部水成物粒子分布和微物理过程的认识,可以为雷暴天气的预警和预报提供必要的指导。In order to understand the distribution and evolution of hydrometeors in thunderstorm cells, a fuzzy logic algorithm is applied to analyze the evolution characteristics of hydrometeors in a typical thunderstorm cell that occurred in Beijing by utilizing the dual-polarization radar parameters and environmental temperature. Furthermore, a wavelet de-noising method and a self-consistent method with constraints(SCWC) are combined to preprocess the data. The results are as follows.(1) According to the macroscopic characteristics of the thunderstorm cell, the process is divided into three stages, i.e. the development stage, the mature stage and the dissipation stage. The average heights of the cell are 11, 12 and 10 km, and the reflectivity can reach 40-45 d BZ, greater than 50 d BZ and 40-45 d BZ in the three stages, respectively. Moreover, the percentages of graupels are 2%, 12% and 1% in the three stages.(2) The main microphysical processes and evolving characteristics in each stage are as follows. In the development stage, the main microphysical process below the freezing level is warm-cloud process with 5% of drizzle(DR) and 24% of rain(RA). A small amount of liquid hydrometeors rises to the layer above the freezing level, reacting with dry crystal(DC) and generating 1% of graupels, which actually is a weak cold cloud process. During the mature stage, there is an enhanced warm-cloud process with DR decreasing by a percentage of 2 and RA increasing by a percentage of 2. More liquid hydrometeors can rise to the layer above the freezing level and there is an enhanced cold cloud process with 4% of RA and 5% of DC converting to 7% of graupels. At the last stage, the liquid hydrometeors below 0°C layer cannot rise to the layer above 0°C, which leads to weaker warm and cold cloud processes. DR increases by a percentage of 1 below the freezing level while DC increases by a percentage of 2, and graupels above the freezing level reduces by a percentage of 5.(3) Based on the above results and dy
关 键 词:X波段双线偏振天气雷达 模糊逻辑算法 水成物粒子 雷暴单体
分 类 号:P415.2[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...