检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓晓[1] 殷小琳[2] 李红丽[1] 苏丹[1] 贾淑友 董智[1]
机构地区:[1]山东农业大学林学院/山东省土壤侵蚀与生态修复重点实验室/泰山森林生态站,泰安271018 [2]中国水利水电科学研究院,北京100038
出 处:《生态学报》2017年第21期7258-7265,共8页Acta Ecologica Sinica
基 金:中国水利水电科学研究院科研专项(SE0145C112015);世界银行贷款山东生态造林项目(SEAP-JC-2)
摘 要:以3种一年生白榆品系(Y65、Y1、Y34)为试验材料,通过测定5种浓度NaCl处理(0、50、85、120、155 mmol/L)下其生物量、叶绿素含量及光合参数等指标的变化,探讨3个白榆品系的耐盐性差异及其光合参数的表征。结果表明:与对照相比,白榆品系生物量及叶绿素含量随NaCl胁迫增强逐渐降低,高NaCl胁迫(>85 mmol/L)会显著抑制生物量的累积及破坏叶绿素的合成。低NaCl胁迫(≤85 mmol/L)下,3个品系的光合机制以气孔限制为主,通过提高其气孔限制值而降低蒸腾作用,以提高水分利用效率(WUE)而适应盐分胁迫;而高NaCl胁迫(>85 mmol/L)下,则以非气孔限制为主,通过降低WUE而减少根系对地下水分与盐离子的吸收,以此来维持自身生长。3个白榆品系中,使非气孔限制转变为Pn下降主因的NaCl胁迫浓度不同,Y65、Y1的转折点为85 mmol/L,而Y34的转折点为50 mmol/L。结论:3个供试白榆品系中Y65的综合耐盐性较高,是盐碱地种植白榆品系的优先选择。Salt stress is one of the major environmental factors affecting plants; it causes many changes in plant metabolism, such as changes in the content and composition of chlorophyll and reduction in the capacity and efficiency of photosynthesis. Salt stress also inhibits biomass accumulation. Therefore, plant biomass, photosynthesis, and chlorophyll content are often used as indicators of salt stress injury in plants. Ulmus pumila L. is a widely distributed and important fast-growing hardwood timber species that has good tolerance to drought, cold, salt, and wind. It is the most important timber species in China's Northern regions, saline-alkali areas, and desert, where it is used for afforestation, and to provide shelter forest and greenery.Consequently, it is considered to be a promising plant for cultivation in saline land. In response to salt stress, plants have evolved diverse mechanisms that can mitigate the effects of stress and lead to improved plant tolerance. In this study, 1-year-old potted seedlings of Ulmus pumila L. strains (Y65, Y1, and Y34) were used to examine their changes in chlorophyll content, photosynthetic characteristics, and biomass accumulation under different concentrations of NaCl (CK, 50 mmol/L, 85 mmol/L, 120 mmol/L, and 155 mmol/L). The results showed that the content of chlorophyll and biomass of three the Ulmus pumila L. strains were significantly inhibited under higher-concentration salt stress, whereas no obvious changes were observed for the biomass accumulation of Y65 under lower concentrations of NaCl. Under low salinity stress (NaCl ≤85 mmol/L), the values for leaf photosynthetic rate (Pn), stomatal conductance (Gs), and intercellular CO2 concentration (Ci) were decreased, whereas stomatal limitation (Ls) was increased. Stomatal inhibition (or stomatal restriction) was the main cause of the reduction in Pn of Ulmus pumila L. strains. Although no stomatal restriction occurred in the 120 mmol/L and 155 mmol/L NaCl treatments, the values for Pn a
分 类 号:S792.19[农业科学—林木遗传育种]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.54