机构地区:[1]Department of Manufacturing Engineering, Annamalai University, Chidambaram, Tamil Nadu 608 002, India [2]Physics Section, Faculty of Engineering and Technology, Annamalai University, Chidambaram, Tamil Nadu 608 002, India [3]Department of Mechanical Engineering, Kamaraj College of Engineering and Technology, Virudhunagar, Tamil Nadu 626 001, India
出 处:《Rare Metals》2017年第10期806-811,共6页稀有金属(英文版)
摘 要:Titanium matrix (Ti6Al4V) composites rein- forced with TiB2 and TiC were produced through powder metallurgy method. The effect of addition of both TiB2 and TiC with different contents (2.5 wt%, 5.0 wt% and 7.5 wt%) on the density, microstructure and hardness properties of titanium matrix was investigated. The size distributions of the matrix alloy and reinforcement particles were measured by particle size analyzer. Microhardness of the sintered composites was evaluated using Vickers's hardness tester with a normal load of 3 N and a dwell time of 10 s. Ti6Al4V alloy and Ti6Al4V/TiB2-TiC composites were characterized through X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with energy-dispersive spectrometer (EDS). The addition of TiB2 and TiC particles enriches the properties of Ti6Al4V alloy. The sintered Ti6Al4V/TiB2-TiC composite features a dense and pore-free microstructure with varying TiB2 and TiC particle distribution in the metal matrix. The results of this study show that the development of new phases plays a significant role in the properties of these composite materials.Titanium matrix (Ti6Al4V) composites rein- forced with TiB2 and TiC were produced through powder metallurgy method. The effect of addition of both TiB2 and TiC with different contents (2.5 wt%, 5.0 wt% and 7.5 wt%) on the density, microstructure and hardness properties of titanium matrix was investigated. The size distributions of the matrix alloy and reinforcement particles were measured by particle size analyzer. Microhardness of the sintered composites was evaluated using Vickers's hardness tester with a normal load of 3 N and a dwell time of 10 s. Ti6Al4V alloy and Ti6Al4V/TiB2-TiC composites were characterized through X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) equipped with energy-dispersive spectrometer (EDS). The addition of TiB2 and TiC particles enriches the properties of Ti6Al4V alloy. The sintered Ti6Al4V/TiB2-TiC composite features a dense and pore-free microstructure with varying TiB2 and TiC particle distribution in the metal matrix. The results of this study show that the development of new phases plays a significant role in the properties of these composite materials.
关 键 词:TI6AL4V TIB2 TIC Microstructure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...