机构地区:[1]College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China [2]The Key Laboratory of Advanced Functional Materials, Ministry of Education, Beijing University of Technology, Beijing 100124, China [3]State Key Laboratory of Rare Earth Permanent Magnetic Materials, Hefei 231500, China [4]Anhui Earth-Panda Advance Magnetic Material Co., Ltd, Hefei 231500, China
出 处:《Rare Metals》2017年第10期812-815,共4页稀有金属(英文版)
基 金:financially supported by the National High Technology Research and Development Program of China (No. 2012AA063201);the National Natural Science Foundation of China (Nos. 51001002 and 51371002);the International S&T Cooperation Program of China (No.2015DFG52020);the Natural Science Foundation of Anhui Province (No.1408085MKL72);the 2011 Cooperative Innovation Center of Beijing University of Technology
摘 要:Nd-Fe-B permanent magnets doped with CuZn5 powders were prepared via conventional sintered method. The effects of CuZn5 contents on magnetic properties and corrosion resistance of the magnets were sys- tematically studied. It shows that the remanence, coercivity, and maximum energy product decrease gradually with the increase in CuZn5 doping content. The magnet's corrosion kinetics in autoclaves environment and its electrochemical properties in electrolytes were also examined. It is interesting to see that the weight loss of 3.5 wt% and 4.5 wt% CuZn5 powders doping magnets is only 1 and 0 mg.cm^-2 after autoclaves test at 121 ℃, 2 × 10^5 Pa for 500 h, respectively, which is much lower than that of the magnets without CuZn5 doping. Electrochemical results show that the CuZn5 powders doping magnets display more positive corrosion potential (Eoorr) and lower corrosion current density (Icorr) than those of the original magnets without CuZn5 doping in sulphuric acid electrolyte and distilled water. It is, therefore, concluded that doping CuZn5 powders is a promising way to enhance the corrosion resistance of sintered Nd-Fe-B magnets.Nd-Fe-B permanent magnets doped with CuZn5 powders were prepared via conventional sintered method. The effects of CuZn5 contents on magnetic properties and corrosion resistance of the magnets were sys- tematically studied. It shows that the remanence, coercivity, and maximum energy product decrease gradually with the increase in CuZn5 doping content. The magnet's corrosion kinetics in autoclaves environment and its electrochemical properties in electrolytes were also examined. It is interesting to see that the weight loss of 3.5 wt% and 4.5 wt% CuZn5 powders doping magnets is only 1 and 0 mg.cm^-2 after autoclaves test at 121 ℃, 2 × 10^5 Pa for 500 h, respectively, which is much lower than that of the magnets without CuZn5 doping. Electrochemical results show that the CuZn5 powders doping magnets display more positive corrosion potential (Eoorr) and lower corrosion current density (Icorr) than those of the original magnets without CuZn5 doping in sulphuric acid electrolyte and distilled water. It is, therefore, concluded that doping CuZn5 powders is a promising way to enhance the corrosion resistance of sintered Nd-Fe-B magnets.
关 键 词:Sintered Nd-Fe-B magnet Corrosion resistance CuZn5 powders AUTOCLAVE Polarization characteristics
分 类 号:TG132.27[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...