Hot deformation characterization and processing map of Cu-10 %Fe-1.5 %Ag in situ composite  被引量:3

Hot deformation characterization and processing map of Cu-10 %Fe-1.5 %Ag in situ composite

在线阅读下载全文

作  者:Jun-Qing Guo He Yang Ping Liu Zhi-Wei Cai 

机构地区:[1]State Key Laboratory of Solidification Processing, Northwestern Polytechnical University [2]School of Materials Science and Engineering, University of Shanghai for Science and Technology [3]School of Materials Science and Engineering, University of Henan Science and Technology

出  处:《Rare Metals》2017年第11期912-918,共7页稀有金属(英文版)

基  金:financially supported by the National Natural Science Foundation of China(No.50571035);the National High-Tech Research and Development Project (No.2006AA03Z528)

摘  要:The Cu-10 %Fe-1.5 %Ag in situ composite with high strength, high conductivity and low cost was prepared, and its hot deformation behavior was investi- gated by isothermal compression test with true strain of 0.69, temperature range of 750-950℃ and strain rate of 0.002-1.000 s-1. The flow stress-strain response shows the characterization of dynamic recrystallization (DRX), and the peak stress increases gradually with deformation tem- perature decreasing and strain rate increasing. The defor- mation activation energy of the composite for DRX is calculated as 241.864 kJ.mo1-1. The constitutive relation of the composite was got by Arrhenius equation. Further- more, according to the dynamic material modeling and Kumar-Prasad's instability criteria, the processing map was constructed and the unsafe regions for hot deformation were analyzed. Based on the processing map and microstructural evolution, the optimal parameter range for hot deformation processing is 750-863℃ at the strain rate of 0.002-0.013 s-1.The Cu-10 %Fe-1.5 %Ag in situ composite with high strength, high conductivity and low cost was prepared, and its hot deformation behavior was investi- gated by isothermal compression test with true strain of 0.69, temperature range of 750-950℃ and strain rate of 0.002-1.000 s-1. The flow stress-strain response shows the characterization of dynamic recrystallization (DRX), and the peak stress increases gradually with deformation tem- perature decreasing and strain rate increasing. The defor- mation activation energy of the composite for DRX is calculated as 241.864 kJ.mo1-1. The constitutive relation of the composite was got by Arrhenius equation. Further- more, according to the dynamic material modeling and Kumar-Prasad's instability criteria, the processing map was constructed and the unsafe regions for hot deformation were analyzed. Based on the processing map and microstructural evolution, the optimal parameter range for hot deformation processing is 750-863℃ at the strain rate of 0.002-0.013 s-1.

关 键 词:Cu-10 %Fe-1.5 %Ag in situ composite Hotcompression test Deformation characterization Processingmap Dynamic recrystallization 

分 类 号:TB333[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象