Maximal Inequalities for the Best Approximation Operator and Simonenko Indices  

Maximal Inequalities for the Best Approximation Operator and Simonenko Indices

在线阅读下载全文

作  者:Sonia Acinas Sergio Favier 

机构地区:[1]Instituto de Matematica Aplicada San Luis,IMASL,Universidad Nacional de San Luis and CONICET,Ejercito de los Andes 950,D5700HHW San Luis,Argentina [2]Departamento de Matematica,Facultad de Ciencias Exactas y Naturales,Universidad Nacional de La Pampa,L6300CLB Santa Rosa,La Pampa,Argentina [3]Departamento de Matematica,Universidad Nacional de San Luis,D5700HHW San Luis,Argentina

出  处:《Analysis in Theory and Applications》2017年第3期253-266,共14页分析理论与应用(英文刊)

基  金:supported by Consejo Nacional de Investigaciones Científicas y Técnicas(CONICET)and Universidad Nacional de San Luis(UNSL)with grants PIP 11220110100033CO and PROICO 317902

摘  要:In an abstract set up, we get strong type inequalities in L^p+1 by assuming weak or extra-weak inequalities in Orlicz spaces. For some classes of functions, the number p is related to Simonenko indices. We apply the results to get strong inequal- ities for maximal functions associated to best Ф-approximation operators in an Orlicz space L^Ф.In an abstract set up, we get strong type inequalities in L^p+1 by assuming weak or extra-weak inequalities in Orlicz spaces. For some classes of functions, the number p is related to Simonenko indices. We apply the results to get strong inequal- ities for maximal functions associated to best Ф-approximation operators in an Orlicz space L^Ф.

关 键 词:Simonenko indices maximal inequalities best approximation. 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象