两种改进的模拟退火算法求解大值域约束满足问题  被引量:13

Two improved simulated annealing algorithms for solving constraint satisfaction problems with large domains

在线阅读下载全文

作  者:原志强 赵春艳 

机构地区:[1]上海理工大学理学院,上海200093

出  处:《计算机应用研究》2017年第12期3611-3616,共6页Application Research of Computers

基  金:国家自然科学基金资助项目(11301339;11491240108;11471215);上海高校青年教师培养计划资助项目

摘  要:随机约束满足问题的相变现象及求解算法是NP-完全问题的研究热点。RB(revised B)模型是一个非平凡的随机约束满足问题,它具有精确的可满足性相变现象和极易产生难解实例这两个重要特征。针对RB模型这类具有大值域的随机约束满足问题,提出了两种基于模拟退火的改进算法即RSA(revised simulated annealing algorithm)和GSA(genetic-simulated annealing algorithm)。将这两种算法用于求解RB模型的随机实例,数值实验结果表明,在进入相变区域时,RSA和GSA依然可以有效地找到随机实例的解,并且在求解效率上明显优于随机游走算法。在接近相变阈值点时,由这两种算法得到的最优解仅使得极少数的约束无法满足。Phase transitions and solving algorithms of random constraint satisfaction problems have attracted special attention in the research of NP-complete problems. Model RB is a nontrivial random constraint satisfaction problem. Precisely speaking,model RB is a random CSP with exact satisfiability phase transition,and it is quite easy to generate hard instances. This paper proposed two improved simulated annealing algorithms( i. e. RSA and GSA) to solve the random instances of model RB with large domains. Numerical experiment results show that RSA and GSA algorithms can efficiently find solutions of the instances generated by model RB in the threshold region,and the two algorithms perform much better than random walk algorithm. Unfortunately,the algorithms fail to find solutions in the region that is very close to the satisfiability threshold. However,the optimal solution finally obtained only makes few of the constraints not be satisfied.

关 键 词:约束满足问题 RB模型 模拟退火算法 遗传算法 

分 类 号:TP301.5[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象