检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用研究》2017年第12期3611-3616,共6页Application Research of Computers
基 金:国家自然科学基金资助项目(11301339;11491240108;11471215);上海高校青年教师培养计划资助项目
摘 要:随机约束满足问题的相变现象及求解算法是NP-完全问题的研究热点。RB(revised B)模型是一个非平凡的随机约束满足问题,它具有精确的可满足性相变现象和极易产生难解实例这两个重要特征。针对RB模型这类具有大值域的随机约束满足问题,提出了两种基于模拟退火的改进算法即RSA(revised simulated annealing algorithm)和GSA(genetic-simulated annealing algorithm)。将这两种算法用于求解RB模型的随机实例,数值实验结果表明,在进入相变区域时,RSA和GSA依然可以有效地找到随机实例的解,并且在求解效率上明显优于随机游走算法。在接近相变阈值点时,由这两种算法得到的最优解仅使得极少数的约束无法满足。Phase transitions and solving algorithms of random constraint satisfaction problems have attracted special attention in the research of NP-complete problems. Model RB is a nontrivial random constraint satisfaction problem. Precisely speaking,model RB is a random CSP with exact satisfiability phase transition,and it is quite easy to generate hard instances. This paper proposed two improved simulated annealing algorithms( i. e. RSA and GSA) to solve the random instances of model RB with large domains. Numerical experiment results show that RSA and GSA algorithms can efficiently find solutions of the instances generated by model RB in the threshold region,and the two algorithms perform much better than random walk algorithm. Unfortunately,the algorithms fail to find solutions in the region that is very close to the satisfiability threshold. However,the optimal solution finally obtained only makes few of the constraints not be satisfied.
分 类 号:TP301.5[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3