检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国电子科技集团公司第三十八研究所,安徽合肥230088 [2]哈尔滨工业大学(威海)控制科学与工程系,山东威海264209
出 处:《电子学报》2017年第11期2625-2632,共8页Acta Electronica Sinica
基 金:国家自然科学基金(No.61371045);山东省重点研发计划项目(No.2016JMRH0217;No.2016GGX103032)
摘 要:超分辨率图像重建是增强那些低成本成像传感器系统图像分辨率的有效措施.得益于先验知识的学习,低分辨率图像可有效地被超分辨率增强.针对带有明显边缘结构的图像,现有方法没有有效利用高阶信息从而会出现一些光滑的图像细节.本文针对这种特殊的图像结构,研究一种基于二阶广义方向性全变分的重建方法来挖掘那些隐含的高阶可利用信息.二阶广义方向性全变分不仅可以作为先验知识,还能作为稀疏正则项抑制伪影和噪声.实验结果表明,本文方法可有效超分辨率重建结构边缘图像,并可获得高分辨率图像细节和纹理特征.Super-resolution(SR) image reconstruction has developed into a powerful tool to enhance the image resolution for the systems with low-cost imaging sensors.A direct but efficient approach to super-resolve a low-resolution image is based on prior knowledge learning.But the existing methods do not consider matched high-level features in the images with structured edges,resulting in some smooth image artifacts.A second-order directional total generalized variation(DTGV) regularization based method is proposed to explore the underlying high-level information of the data in this paper.More specifically,second-order DTGV acts as not only an additional prior but also an effective constraint to reduce the image artifacts and remove the noise.Results from several texture images demonstrate that the proposed approach can generate highresolution image details and tend to produce high-frequency textures.
关 键 词:超分辨率重建 广义方向性全变分 优化算法 正则约束
分 类 号:TN919.8[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.223.114.251