检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《山东大学学报(理学版)》2017年第9期76-82,共7页Journal of Shandong University(Natural Science)
基 金:国家自然科学基金资助项目(11271297);陕西省自然科学基金资助项目(2015JM1012);西安工程大学研究生创新基金资助项目(CX201719)
摘 要:在稀疏信息处理中,l0范数优化问题通常转化为l1范数优化问题来求解。但l1范数优化问题存在一些不足。为寻找一种更有效的求稀疏解的算法,首先构造一个新的收缩算子,其次证明该收缩算子是某非凸函数的邻近算子。然后用该非凸函数替代l0-范数,对新的优化问题用向前-向后分裂方法得到对应的迭代阈值算法-迭代分式阈值算法(IFTA)。仿真实验表明该算法(IFTA)在稀疏信号重构和高维变量选择中均有良好的表现。In sparse information processing, 10 minimization is often relaxed to It minimization to find sparse solutions. However, lj minimization has some deficiencies. The paper aims to find a more effective algorithm to find the sparse solutions. At first, a new shrinkage operator was constructed. Secondly, this shrinkage operator was proved to be the proximal mapping of some non-convex function. Then, a new iterative thresholding algorithm, iterative fraction thresh- olding algorithm(IPTA), was given by applying forward-backward splitting to the new optimization problem when l0- norm is replaced with this non-convex function. At last, the simulations indicate that the iterative fraction thresholding algorithm(IFTA) performs well in sparse signal reconstruction and high-dimensional variable selection.
分 类 号:O231[理学—运筹学与控制论] O29[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.235.148