检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学地球科学与信息物理学院,湖南长沙410083
出 处:《中南大学学报(自然科学版)》2017年第11期3031-3037,共7页Journal of Central South University:Science and Technology
基 金:国家自然科学基金资助项目(50878212);中南大学中央高校基本科研业务费专项资金资助项目(2016zzts435)~~
摘 要:基于传统的灰色Verhulst模型在基坑沉降预测中精度较低的问题,提出优化的灰色离散Verhulst模型。在基坑沉降监测中,由于有新的监测沉降值不断补充到原始数据序列中,各种因素会带来新的扰动,原来的模型精度降低,为避免由此产生的误差,用新陈代谢方法建立优化灰色离散Verhulst一维、二维新陈代谢模型。将传统Verhulst模型、优化的灰色离散Verhulst模型及优化灰色离散Verhulst一维、二维新陈代谢模型进行比较。研究结果表明:该模型通过采用离散化思维对原数据序列进行倒数变换,从连续形式向离散形式变化,减小了传统Verhulst模型建模过程中从微分方程到差分方程带来的误差;采用新陈代谢方法的优化灰色离散Verhulst模型精度更高,可选用该模型对基坑进行沉降预测。Considering the low accuracy of the traditional grey Verhulst model in the foundation pit settlement prediction,the optimized discrete grey Verhulst model was put forward. In the settlement monitoring of foundation pit, the newmonitoring settlement data was constantly added to the original data sequence, and all kinds of factors would bring newdisturbance, so the original model accuracy was reduced. In order to avoid the resulting errors, the metabolic method wasused to establish the optimization of one?dimensional and two?dimensional metabolic model of grey discrete Verhulstmodel. The traditional Verhulst model, the optimization of the discrete grey Verhulst model and the optimization of one?dimensional and two?dimensional metabolic model of grey discrete Verhulst model were compared. The results showthat the proposed model is based on the reciprocal transformation of the original data sequence by using discrete thinking,and the change from continuous form to discrete form reduces the error from the differential equation to the differenceequation in the modeling process of the traditional Verhulst model. The optimized grey discrete Verhulst model based onthe metabolic method has higher accuracy, and the model can be used to predict the settlement of the foundation pit.
关 键 词:沉降预测 优化的灰色离散Verhulst模型 新陈代谢方法 预测精度
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222