逆断层正牵引构造对冲积扇沉积过程与沉积构型的控制作用:水槽沉积模拟实验研究  被引量:13

The controlling effects on depositional process and sedimentary architecture of alluvial fan by normal drag structure caused by thrust fault:insights from flume tank experiments

在线阅读下载全文

作  者:冯文杰[1,2,3] 吴胜和[1,2] 刘忠保[3] 夏钦禹 张可[1,2] 徐振华[1,2] 向显鹏 

机构地区:[1]中国石油大学(北京)地球科学学院 [2]油气资源与探测国家重点实验室,北京102249 [3]长江大学地球科学学院,湖北武汉430100 [4]中国石油勘探开发研究院鄂尔多斯分院,北京100083 [5]中国石油新疆油田分公司,新疆克拉玛依834000

出  处:《地学前缘》2017年第6期370-380,共11页Earth Science Frontiers

基  金:国家自然科学基金项目(41372116)

摘  要:逆断层正牵引构造广泛发育于挤压盆地边缘,伴随逆断层的幕式活动而生成,并影响山前冲积扇沉积过程与沉积构型。为进一步认识这种特殊的凸起构造对冲积扇沉积过程及其内部构型的控制作用,利用水槽实验对正牵引构造发育背景下的冲积扇沉积过程进行模拟与观测。研究表明,携带大量沉积物的碎屑流冲出供水槽后很快受到正牵引构造的阻挡,大量的粗粒沉积物快速卸载在正牵引构造的迎水面,形成一个砂砾坝,同时水流被分成两股分支水流。由于较粗粒的沉积物快速在迎水面卸载,砂砾坝迎着水流逐步向物源方向生长,形成逆向(生长)砂砾坝。分支水流绕过正牵引构造后形成两个新的次级物源,在次级物源持续供给下,形成两个由多期碎屑流朵体复合而成的次级扇。受控于正牵引构造的阻挡,冲积扇表面不同位置的沉积物卸载过程差异较大,相较于正常冲积扇沉积体,砂砾坝沉积物偏粗、分选更差,而次级扇沉积物粒度偏细、分选更好;正牵引构造凸起幅度高低也会影响冲积扇沉积构型,凸起幅度越高,正牵引构造对水流的阻挡作用越强、越持久,逆向砂砾坝和次级扇的规模越大、空间结构也越复杂。正牵引构造完全被沉积物覆盖后,扇面沉积特征与一般冲积扇无异。受控于正牵引构造的冲积扇与一般冲积扇的内部构型存在较大差异,在顺物源剖面上前者依次发育碎屑流朵体、逆向砂砾坝及次级扇,而后者则整体以碎屑流朵体为主;在由近端至远端的切物源剖面上,前者依次以碎屑流朵体主控、逆向砂砾坝主控及次级扇主控,而后者则均以碎屑流朵体主控为主。The normal drag structure controlled by the thrust fault is widely developed in the margin of the compressional basin edge. It formed from the episodic activity of the reverse fault and plays an important role in the depositional process and sedimentary architecture of alluvial fan. In order to understand the controlling effect on the depositional process and sedimentary architecture of alluvial fan by the normal drag structure caused by thrust fault, a set of flume tank experiments have been performed. The study, based on the observation and analysis of the depositional process, shows that large amounts of sediment carried by the high energy stream, rushed out from the synthetic valley and were blocked by the normal drag structure soon afterwards. A fraction of the coarser sediment unloaded at the upstream face of the normal drag structure, the debris flow then separated into two branch channels or deflected to one side of the normal drag structure. Due to the rapid unloading of the coarse sediment, a gravel-sandy bar formed at the upstream face and grew against the stream as debris continued to accumulate (i. e. reverse growth sandy-gravel bar). After rounding the upstream face of the normal drag structure, the branch-channels acted as new sediment source. As a result, two secondary alluvial fan, composed of several debris lobes, formed at the back of the normal drag structure. Controlled by the blocking of normal drag structure, the unloading of sediment on the alluvial fan was visibly different at different locations. Compared with the normal alluvial fan, the sediments of the reverse growth sandy-gravel bar were coarser with poorer sorting, and the sediments of the secondary fans were finer with better sorting. The sedimentary architecture of the alluvial fan also changed with the height of the normal drag structure: the higher the normal drag structure, the stronger and longer control it has on the deposition process. Consequently, the size of the reverse growth sandy-gravel bar and secondary fans as

关 键 词:水槽实验 正牵引构造 冲积扇 沉积过程 沉积构型 

分 类 号:P542[天文地球—构造地质学] P512.2[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象