DECAY RATE OF FOURIER TRANSFORMS OF SOME SELF-SIMILAR MEASURES  

DECAY RATE OF FOURIER TRANSFORMS OF SOME SELF-SIMILAR MEASURES

在线阅读下载全文

作  者:高翔 马际华 

机构地区:[1]School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China

出  处:《Acta Mathematica Scientia》2017年第6期1607-1618,共12页数学物理学报(B辑英文版)

基  金:supported by NSFC(11271148)

摘  要:This paper is concerned with the Diophantine properties of the sequence {ξθn}, where 1 ≤ξ 〈 θ and θ is a rational or an algebraic integer. We establish a combinatorial proposition which can be used to study such two cases in the same manner. It is shown that the decay rate of the Fourier transforms of self-similar measures μλ with λ = θ-1 as the uniform contractive ratio is logarithmic. This generalizes some results of Kershner and Bufetov-Solomyak, who consider the case of Bernoulli convolutions. As an application, we prove that μλ ahaost every x is normal to any base b ≥ 2, which implies that there exist infinitely many absolute normal numbers on the corresponding self-similar set. This can be seen as a complementary result of the well-known Cassels-Schmidt theorem.This paper is concerned with the Diophantine properties of the sequence {ξθn}, where 1 ≤ξ 〈 θ and θ is a rational or an algebraic integer. We establish a combinatorial proposition which can be used to study such two cases in the same manner. It is shown that the decay rate of the Fourier transforms of self-similar measures μλ with λ = θ-1 as the uniform contractive ratio is logarithmic. This generalizes some results of Kershner and Bufetov-Solomyak, who consider the case of Bernoulli convolutions. As an application, we prove that μλ ahaost every x is normal to any base b ≥ 2, which implies that there exist infinitely many absolute normal numbers on the corresponding self-similar set. This can be seen as a complementary result of the well-known Cassels-Schmidt theorem.

关 键 词:self-similar measures Fourier transforms decay rate normal numbers 

分 类 号:O174.22[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象