检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘国海[1] 陈杰[1] 赵文祥[1] 袁骏 徐亮[1]
机构地区:[1]江苏大学电气信息工程学院,江苏镇江212013
出 处:《电机与控制学报》2018年第1期23-28,共6页Electric Machines and Control
基 金:国家自然科学基金(51577084;51422702);江苏省"333工程"项目(BRA2015302)
摘 要:针对两电机调速系统高精度张力传感器价格昂贵、安装要求高、材料和环境限制多的问题,提出基于"内含传感器"的神经网络左逆张力软测量方法。为实现两电机调速系统张力辨识,基于"内含传感器"的概念,建立"内含传感器"张力子系统,并证明其数学模型的左可逆性。考虑到逆系统模型较为复杂,存在参数时变的特点,采用BP神经网络精确逼近张力左逆模型,并串联在原系统之后,实现张力的辨识。基于两电机实验平台,对张力辨识效果进行仿真及实验验证,研究结果表明,该策略能够快速、精确地跟踪张力实际值,且易于实现。In order to solve the problem of high cost, high installation requirements, material and environ-ment constraints of high precision tension sensor of two-motor drive system, a tension identification metli-od based on assumed internal sensor neural network left inverse was proposed. To identify the tension oftwo-motor speed regulation system, the tension subsystem of two-motor drive sthe existence of its left-inverse was proved based on the named inherent sensor. Considerinplexity of t!ie mat!iematic model and time-variant system parameter in the left-inverse system, a novel i-dentification strategy based on neural network left inverse ( NNLI) was proposed, in which the back prop-agation neural network ( BPNN) was used to approximate the left-inverse system of tension. Then,it isconnected in series wit!i the original system to realize the estimation of tension. Timental results of two-motor drive system are given,verifying that the proposed strategy can identify theactual tension quickly and accurately.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.104