图像处理中的格子玻尔兹曼方法研究综述  被引量:5

Review of Lattice Boltzmann method for image processing

在线阅读下载全文

作  者:刘应乾 严壮志[1] 

机构地区:[1]上海大学通信与信息工程学院,上海200444

出  处:《中国图象图形学报》2017年第12期1623-1639,共17页Journal of Image and Graphics

基  金:国家自然科学基金项目(61171146;61675124)~~

摘  要:目的格子玻尔兹曼(LB)方法作为一种兼具建模与快速求解偏微分方程(PDE)功能的方法已被成功应用于图像去噪、修复和分割。考虑到国内外尚未有LB方法在图像处理中研究进展的综述论文,为使即将进入该研究领域的学者比较全面地了解该方法的研究现状,本文对其进行系统综述。方法着重分析了与图像去噪、修复、分割和3维图像处理密切相关的文献,将LB图像处理模型的构建分为自上而下和自下而上两种途径,对图像处理中的LB模型从宏观和微观两个角度进行分类。对模型的计算机实现算法、算法时间复杂度以及模型的具体应用进行分析与总结。最后,讨论了LB方法与PDE方法的本质区别,并指出几个尚未解决的问题。结果第一,LB方法在图像处理中具有清晰的物理意义,像素值可视被为粒子密度值,像素值的改变可被视为受松弛时间和源项影响的粒子的重新分布;第二,各向异性扩散模型、非线性扩撒模型、线性扩散模型之间的微观区别在于松弛时间的差异,以上模型的时间复杂度依次降低,含源项扩散模型的时间复杂度除松弛时间以外还受外力项的影响;第三,自上而下的建模方法仅仅将LB视为PDE的一种解法,自下而上的建模方法从LB方法的物理意义出发,直接设计演化方程的关键参数,相对于第一种方法更为灵活;第四,LB算法固有并行,编程简单,当该方法被应用于并行平台时,图像数据量越大,GPU/CPU加速比越明显;第五,各向异性、非线性扩散模型可用于图像去噪、修复,含源项扩散模型中外力项的设计对图像分割质量有较大影响。结论尽管LB方法作为一种固有的并行算法在3维图像去噪、配准和分割等快速图像处理领域具有极高的应用价值,但仍然存在边界条件处理、并行平台选择及优化等几个值得继续研究的问题。Objective Currently, images, such as 3D medical and high-resolution satellite images, provide considerable in- formation, and image processing results are required in real time in many cases, such as clinical and meteorological. Paral- lel image processing devices, such as graphics processing unit (GPU) and field-programmable gate arrays, have been crea- ted for engineers at a convenient price. Partial differential equation (PDE) method is extensively used in image processing. However, its solution methods are time-consuming and difficult to be directly mapped to GPU. Traditional PDE solution methods are contradictory to the assumption that space and time are continuous. Thus, a method that is naturally parallel and simple and with clear physical meaning is required to simulate the macro model described by the PDE. Recently, lat- tice Boltzmann (LB) method has been applied to image denoising, inpainting, registration, and segmentation as an effi- cient and flexible method for modeling and solving PDE. However, a systematic review of the applications of LB for image processing has not been found in previous studies. Therefore, this paper proposes the abovementioned literature review to support scholars in gaining further insights into the frontier development of the topic. Method In this work, numerous pub- lic reports on the applications of LB for image denoising, inpainting, segmentation, and other 3D image processing were ini- tially surveyed using the keywords, "lattice Bohzmann" and "image processing. " These reports were classified according to their differences when scholars proposed LB mathematical models, namely, "top-down" or "bottom-up" approaches in terms of macro or micro, respectively. Then, programming algorithms, computing complexities, and application scenarios of LB for image processing were analyzed and summarized. Finally, essential differences between LB and other PDE-solving methods were concluded, and further research directions on this topic were proposed. Result

关 键 词:图像处理 格子玻尔兹曼方法 图像扩散格子玻尔兹曼模型 并行算法 时间复杂度 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象