基于社交平台的众包质量控制算法研究  被引量:1

Quality Control Algorithm Research of Crowdsourcing Based on Social Platform

在线阅读下载全文

作  者:丁岳伟[1] 王飘 

机构地区:[1]上海理工大学光电信息与计算机工程学院,上海200093

出  处:《软件导刊》2017年第12期90-93,共4页Software Guide

摘  要:众包产生于比较复杂的互联网平台上,必须对互联网平台上的众包质量进行控制,研究基于社交平台的众包质量控制算法尤为必要。根据众包问题涉及领域,将用户在社交平台领域的直接信誉度算法与用户对历史任务完成情况的质量评估算法相结合完成用户筛选,并根据筛选用户给出的方案集,利用最大期望算法(E-M算法)获取正确率相对较高的方案。实验结果表明,即使在加入了一些恶意工作者的情况下,利用直接信誉度算法与用户质量评估算法筛选用户,并使用E-M算法处理方案集能够使社交平台上的众包质量得到较好控制。As crowd-sourcing is generated on the Internet platform complex relatively,it is necessary to control the quality of crowd-sourcing on the Internet platform.So far,however,there has been little research into crowd-sourcing quality control on social platforms.Mainly studies the quality control algorithm of crowd-sourcing based on social platform.Firstly,this paper adopts the user's direct reputation algorithm based on the social platform and the user's quality evaluation algorithm for the completion of the historical task to filter users,according to the domain covered of crowd-sourcing problem.Finally,according to the scheme set of the filtered users,the maximum expectation algorithm(EM algorithm)is adopted to obtain the scheme with correct rate relatively high.The experimental results show that,even in the case of some malicious workers joining in,using the direct algorithm of the reputation and the quality of the user evaluation algorithm to filter users,and using EM algorithm to process scheme set can make the quality of crowd-sourcing on social platform get control better.

关 键 词:众包 社交平台 质量检测 领域信誉度 最大期望算法 

分 类 号:TP312[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象