Substrate matters:The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes  被引量:5

Substrate matters: The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes

在线阅读下载全文

作  者:Jie Li,Mingjie Wei YongWang 

机构地区:[1]State Key Laboratory of Materials-Oriented Chemical Engineering,Jiangsu National Synergetic Innovation Center for Advanced Materials,College of Chemical Engineering,Nanjing Tech University,Nanjing 210009,China

出  处:《Chinese Journal of Chemical Engineering》2017年第11期1676-1684,共9页中国化学工程学报(英文版)

基  金:Supported by the National Basic Research Program of China(2015CB655301);the Natural Science Foundation of Jiangsu Province(BK20150063);the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)

摘  要:Thin-film composite(TFC) reverse osmosis(RO) membranes are playing the dominating role in desalination.Tremendous efforts have been put in the studies on the polyamide selective layers. However, the effect of the substrate layers is far less concerned. In this review, we summarize the works that consider the impacts of the substrates, including pore sizes, surface hydrophilicity, on the processes of interfacial polymerization and consequently on the morphologies of the active layers and on final RO performances of the composite membranes. All the works indicate that the pore sizes and surface hydrophilicity of the substrate evidently influence the RO performances of the composite membranes. Unfortunately, we find that the observations and understandings on the substrate effect are frequently varied from case to case because of the lack of substrates with uniform pores and surface chemistries. We suggest using track-etched membranes or anodized alumina membranes having relatively uniform pores and functionalizable pore walls as model substrates to elucidate the substrate effect.Moreover, we argue that homoporous membranes derived from block copolymers have the potential to be used as substrates for the large-scale production of high-performances TFC RO membranes.Thin-film composite (TFC) reverse osmosis (RO) membranes are playing the dominating role in desalination. Tremendous efforts have been put in the studies on the polyamide selective layers. However, the effect of the substrate layers is far less concerned. In this review, we summarize the works that consider the impacts of the substrates, including pore sizes, surface hydrophilicity, on the processes of interfacial polymerization and consequently on the morphologies of the active layers and on final RO performances of the composite membranes. All the works indicate that the pore sizes and surface hydrophilicity of the substrate evidently influence the RO performances of the composite membranes. Unfortunately, we find that the observations and understandings on the substrate effect are frequently varied from case to case because of the lack of substrates with uniform pores and surface chemistries. We suggest using track-etched membranes or anodized alumina membranes having relatively uniform pores and functionalizable pore walls as model substrates to elucidate the substrate effect. Moreover, we argue that homoporous membranes derived from block copolymers have the potential to be used as substrates for the large-scale production of high-performances TFC RO membranes.

关 键 词:Reverse osmosis Thin-film composite Interfacial polymerization Homoporous membranes Substrate effect 

分 类 号:TQ0[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象