机构地区:[1]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China [2]School of Architectural Engineering, Heilongiiang University, Harbin 150080, China [3]Key Laboratory of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin 150090, China [4]Key Laboratory of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin 150090, China
出 处:《Frontiers of Environmental Science & Engineering》2017年第6期179-192,共14页环境科学与工程前沿(英文)
基 金:Acknowledgements Support for this research is provided by the National Science & Technology Pillar Program of China (No. 212BAC05B02), the National Natural Science Foundation of China (Nos. 5117834 and 5378141), Program for New Century Excellent Talents in University, Ministry of Education of China (Grant No. NCET-13-0180), State Key Laboratory of Pollution Control and Resource Reuse Foundation (Grant No. PCRRF13003), Postdoctoral Science-Research Developmental Foundation of Heilongjiang Province (Grant No. LBH-Q12107), and the National Engineer Research Center of Urban Water Resources.
摘 要:The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L^-1, SRF of the sludge decreased from 7.85 × 10^12 m·kg^-1 to 2.06× 10^12 m·kg^-1, and the filter cake moisture decreased from 85% to 60%. The reconstruction of "floc mass" was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.The relationship between the improvement of sludge dewaterability and variation of organic matters has been studied in the process of sludge pre-conditioning with modified cinder, especially for extracellular polymeric substances (EPS) in the sludge. During the conditioning process, the decreases of total organic carbon (TOC) and soluble chemical oxygen demand (SCOD) were obviously in the supernatant especially for the acid modified cinder (ACMC), which could be attributed to the processes of adsorption and sweeping. The reduction of polysaccharide and protein in supernatant indicated that ACMC might adsorb EPS so that the tightly bound EPS (TB-EPS) decreased in sludge. In the case of ACMC addition with 24 g·L^-1, SRF of the sludge decreased from 7.85 × 10^12 m·kg^-1 to 2.06× 10^12 m·kg^-1, and the filter cake moisture decreased from 85% to 60%. The reconstruction of "floc mass" was confirmed as the main sludge conditioning mechanism. ACMC promoted the dewatering performance through the charge neutralization and adsorption bridging with the negative EPS, and provided firm and dense structure for sludge floc as skeleton builder. The passages for water quick transmitting were built to avoid collapsing during the high-pressure process.
关 键 词:Sludge conditioning Acid or alkali modified cinder TB-EPS Floc mass Floc reconstruction
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...