Ordering uniform supertrees by their spectral radii  被引量:4

Ordering uniform supertrees by their spectral radii

在线阅读下载全文

作  者:Xiying YUAN Xuelian SI Li ZHANG 

机构地区:[1]Department of Mathematics, Shanghai University, Shanghai 200444, China [2]Sclool of Statistics and Mathematics, Shanghai FinanceUniversity,Shanghai 201209, China

出  处:《Frontiers of Mathematics in China》2017年第6期1393-1408,共16页中国高等学校学术文摘·数学(英文)

基  金:This work was supported in part by the National Natural Science Foundation of China (Grant No. 11101263).

摘  要:A supertree is a connected and acyclic hypergraph. For a hypergraph H, the maximal modulus of the eigenvalues of its adjacency tensor is called the spectral radius of H. By applying the operation of moving edges on hypergraphs and the weighted incidence matrix method, we determine the ninth and the tenth k-uniform supertrees with the largest spectral radii among all k-uniform supertrees on n vertices, which extends the known result.A supertree is a connected and acyclic hypergraph. For a hypergraph H, the maximal modulus of the eigenvalues of its adjacency tensor is called the spectral radius of H. By applying the operation of moving edges on hypergraphs and the weighted incidence matrix method, we determine the ninth and the tenth k-uniform supertrees with the largest spectral radii among all k-uniform supertrees on n vertices, which extends the known result.

关 键 词:Uniform hypergraph adjacency tensor uniform supertree spectral radius 

分 类 号:T0[一般工业技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象