Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition  

Asymptotic estimate of a twisted Cauchy-Riemann operator with Neumann boundary condition

在线阅读下载全文

作  者:Hao WEN 

机构地区:[1]School of Mathematical Sciences, Peking University, Beijing 100871, China

出  处:《Frontiers of Mathematics in China》2017年第6期1469-1481,共13页中国高等学校学术文摘·数学(英文)

摘  要:Abstract For a holomorphic function f defined on a strongly pseudo-convex domain in Cn such that it has only isolated critical points, we define a twisted Cauchy-Riemann operator -δτf :-δ+τδf∧. We will give an asymptotic estimate of the corresponding harmonic forms as T tends to infinity. This asymptotic estimate is used to recover the residue pairing of the singularity defined by f.Abstract For a holomorphic function f defined on a strongly pseudo-convex domain in Cn such that it has only isolated critical points, we define a twisted Cauchy-Riemann operator -δτf :-δ+τδf∧. We will give an asymptotic estimate of the corresponding harmonic forms as T tends to infinity. This asymptotic estimate is used to recover the residue pairing of the singularity defined by f.

关 键 词:Asymptotic estimate residue pairing 

分 类 号:T0[一般工业技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象