检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院物理研究所,北京凝聚态物理国家实验室,北京100190 [2]中国科学院大学物理科学学院,北京100049
出 处:《科学通报》2017年第34期4054-4060,共7页Chinese Science Bulletin
基 金:国家重点基础研究发展计划(2015CB921304)资助
摘 要:Ta_4Pd_3Te_(16)是具有准一维结构的超导体,超导温度T_C=4.3 K.本文介绍利用^(125)Te核磁共振和^(181)Ta核四极矩共振研究Ta_4Pd_3Te_(16)的物性.^(181)Ta的自旋为I=7/2,对四极矩相互作用敏感;^(125)Te的自旋为I=1/2,只能感受磁相互作用.通过对比^(181)Ta与^(125)Te两种元素的自旋弛豫率(1/T_1),发现在温度低于80 K时出现电场梯度涨落,并随着降温逐渐增强,在T_(CDW)=20 K进入电荷密度波有序态.在超导态,^(125)Te的1/T_1在略低于T_C时出现Hebel-Slichter相干峰,这表明Ta_4Pd_3Te_(16)是一种无能隙节点的超导体.由于强烈电场梯度涨落,^(181)Ta的1/T_1并没有出现相干峰.Low-dimensional systems often display rich physical phenomena, such as charge density wave(CDW), spin density wave(SDW), and superconductivity. Many superconductors were found at low dimensions where the superconductivity coexists with or adjoins another ordered state and has an unconventional nature. The high transition temperature(TC) superconductivity has been realized in two-dimensional copper oxides and iron pnictides, where the superconducting phase is located in the vicinity of magnetic and nematic orders. This raises an interest in finding unconventional superconductivity in low-dimensional materials. Ta4Pd3Te(16) with a quasi-one-dimensional crystal structure was discovered to be superconducting with TC-4.6 K. It consists of PdTe2 chains, TaTe3 chains, and Ta2Te4 double chains along the crystallographic b axis. Band structure calculations indicate that Ta4Pd3Te(16) is an s-wave superconductor with pairing from phonons associated with the Te-Te p bonding and a Fermi-surface associated with Te p bands. Although scanning tunneling microscopy(STM) found that the superconducting gap structure in this system is more likely anisotropic without nodes, nodal gap behaviors were claimed by thermal conductivity and specific heat measurements. STM study suggested that the system is in the vicinity of an ordered state that shows a periodic modulation. This suggestion is consistent with the observation that the magnetoresistance shows an H-linear behavior without saturation up to 50 T. In this paper, we report nuclear magnetic resonance and nuclear quadrupole resonance investigations on Ta4Pd3Te(16). The spin-lattice relaxation rate(1/T1) divided by the temperature, 1/T1T, of -(125)Te is almost a constant and obeys the Korringa relationship as in a normal metal, but 1/T1 T of -(811)Ta increases dramatically below 80 K. These results indicate strong electric-field-gradient(EFG) fluctuations, since -(811)Ta has a nuclear spin I=7/2 with a large nuclear quadrupole moment tha
分 类 号:O511.3[一般工业技术—材料科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145