机构地区:[1]Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China [2]Department of Pathology, MitoCare Center, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
出 处:《Biophysics Reports》2017年第4期64-72,共9页生物物理学报(英文版)
基 金:This work was financially supported by the '973" program (2013CB967403, 2012CB721105, and 2016YFA0100302), the "Frontier Science Key Research Program" of the Chinese Academy of Sciences (QYZDB-SSW-SMC001), the National Natural Science Foundation projects of China (31622037, 31271527, 81570520, 31601176, and 31601088), Guangzhou Science and Technology Program (2014Y2-00161), Guangzhou Health Care and Cooperative Innovation Major Project (201604020009), Guangdong Natural Science Foundation for Distinguished Young Scientists ($20120011368), Guangdong Province Science and Technology Innovation The Leading Talents Program (2015TX01R047), Guangdong Province Science and Technology Innovation Young Talents Program (2014TQ01R559), Guangdong Province Science and Technology Program (2015A020212031), the PhD Start-up Fund of Natural Science Foundation of Guangdong Province (2014A030310071), and by NIH Grants (AA017773 and DK051526) to G.H.
摘 要:Mitochondrial dynamics refers to the processes maintaining mitochondrial homeostasis, including mitochondrial fission, fusion, transport, biogenesis, and mitophagy. Mitochondrial dynamics is essential for maintaining the metabolic function of mitochondria as well as their regulatory roles in cell signaling. In this review, we summarize the recently developed imaging techniques for studying mitochondrial dynamics including: mitochondrial-targeted fluorescent proteins and dyes, live-cell imaging using photoactivation, photoswitching and cell fusion, mitochondrial transcription and replication imaging by in situ hybridization, and imaging mitochondrial dynamics by super-resolution microscopy. Moreover, we discuss examples of how to choose and combine proper fluorescent dyes and/or proteins.Mitochondrial dynamics refers to the processes maintaining mitochondrial homeostasis, including mitochondrial fission, fusion, transport, biogenesis, and mitophagy. Mitochondrial dynamics is essential for maintaining the metabolic function of mitochondria as well as their regulatory roles in cell signaling. In this review, we summarize the recently developed imaging techniques for studying mitochondrial dynamics including: mitochondrial-targeted fluorescent proteins and dyes, live-cell imaging using photoactivation, photoswitching and cell fusion, mitochondrial transcription and replication imaging by in situ hybridization, and imaging mitochondrial dynamics by super-resolution microscopy. Moreover, we discuss examples of how to choose and combine proper fluorescent dyes and/or proteins.
关 键 词:Imaging PHOTOACTIVATION PHOTOSWITCHING Mitochondrial dynamics Super-resolution microscope
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...