不同NDVI年值提取方法对秦岭山地植被变化及其气候响应的影响  被引量:3

Impact of Different Extracted Methods of Annual NDVI on Vegetation Cover Change and Their Response to Climate Change in Qinling Mountains

在线阅读下载全文

作  者:王涛[1,2,3] 田阳[4] 相如 WANG Tao;TIAN Yang;XIANG Ru(College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127;College of Geomatics, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau/Institute of Water and Soil Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100;The People's Government of Hengshan Town Qijiang District Chongqing Municipal, Chongqing 401460)

机构地区:[1]西北大学城市与环境学院,陕西西安710127 [2]西安科技大学测绘科学与技术学院,陕西西安710054 [3]黄土高原土壤侵蚀与旱地农业国家重点实验室,中国科学院水利部水土保持研究所,陕西杨凌712100 [4]重庆市綦江区横山镇人民政府,重庆401460

出  处:《北方园艺》2017年第24期148-155,共8页Northern Horticulture

基  金:国家林业公益性行业科研专项资助项目(201304309);黄土高原土壤侵蚀与旱地农业国家重点实验室开放基金资助项目(A314021402-1616);陕西省大学生创新创业训练计划资助项目(201710704072)

摘  要:基于2000—2014年秦岭山地MODIS NDVI影像、气温和降水数据,分别利用平均值法(AVM)、最大值合成法(MVC)、平均-最大值合成法(AMVC)、时序重建方法(RAVM)获取NDVI年值,分析了不同方法下NDVI时空变化过程与趋势,及其与气温、降水的相关性,以期为秦岭山地植被动态变化及其气候响应准确评估提供方法基础。结果表明:RAVM获取的NDVI年值效果较好,平均值居中,线性变化趋势极显著。其次为AMVC、MVC和AVM法获取的NDVI年值偏高和偏低。山地植被动态监测中,植被退化是关注的热点问题,AMVC方法计算得到的秦岭山地NDVI线性减少趋势分布面积最大,其次为MVC、RAVM、AVM方法。不同NDVI年值提取方法下,NDVI与气温的相关性具有一定的差异。如相关系数空间分散分布(MVC和RAVM)和相对集中分布(AVM和AMVC),NDVI与气温的正相关为主(AVM和RAVM)和负相关为主(MVC和AMVC)。但4种不同方法下NDVI与降水的相关性均以正相关为主,表明不同方法表现植被与降水关系具有一致性,而植被与气温的关系不稳定。On the basis of the MODIS NDVI images,temperature and precipitation data from 2000 to2014 in Qinling Mountains,the spatial and temporal variation of NDVI and the correlation between NDVI and temperature,precipitation were analyzed with 4 different extraction methods on annual NDVI value,such as AVM(Average Value Method),MVC(Maximum Value Composition),AMVC(Average-Maximum Value Composition)and RAVM method(Reconstruction-Average Value Method).This study would provide an information to accurate assessment of NDVI change in Qinling Mountains.The results showed that the RAVM was the best to extract annual value of NDVI,and the linear change trend was very significant,followed by the AMVC,while the annual value of NDVI extracted by MVC and AVM were higher and lower.Vegetation degradation was a hot issue for the monitoring of Qinling Mountains.The linear reduction trend area calculated by AMVC was the largest,followed by the MVC,RAVM and AVM.The correlation between NDVI and temperature was different to a certain extent,such as the spatial distribution of coefficient was relatively scattered(MVC and RAVM)or concentrated(AVM and AMVC),and the positive(AVM and RAVM)or negative correlation(MVC and AMVC).But the correlation between NDVI and precipitation was positive for the 4 different methods,which reflect the correlation between NDVI and precipitation was stable and unstable between NDVI and temperature.

关 键 词:MODIS NDVI MVC 气温 降水 秦岭山地 

分 类 号:P463.2[天文地球—大气科学及气象学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象