检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:游翔宇 程希骏[1] 马利军 YOU Xiang-yu;CHENG Xi-jun;MA Li-jun(Department of Statistics and Finance, University of Science and Technology of China, Hefei 230026, Chin)
机构地区:[1]中国科学技术大学统计与金融系,安徽合肥230026
出 处:《数学的实践与认识》2017年第21期24-31,共8页Mathematics in Practice and Theory
基 金:国家自然科学基金(11371340)
摘 要:通过GARCH模型对收益率序列的边缘分布建模,结合copula构建收益率的联合分布函数,并由蒙特卡洛模拟生成收益率的情景,得到的结果代入广义熵约束的CVaR模型中,由此得到最优的投资权重.实证表明,在考虑不同资产之间的相依结构基础上得到的最优化结果相比传统的M-V模型具有明显的优势,在分散化和收益性上的到很好的效果.At first this paper presents a method to find the optimal portfolio weights, which uses GARCH model and copula method to construct the marginal distribution and joint distribution of the rate of return. Then Monte Carlo simulation technique is used to generate scenario of the rate of return, which is regarded as the input variable in the model of CVaR with constraint of generalized entropy. The empirical result indicates that the optimal portfolio weights we get perform better than the M-V model in diversification and profitability in consideration of dependency structure between the assets in the portfolio.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.226.170