非二重性拟度量测度空间中修正的极大函数定理及其应用  

Modified Maximal Function Theorems in a Nondoubling Quasi-Metric Measure Space and Applications

在线阅读下载全文

作  者:王会菊 钮鹏程[1] 

机构地区:[1]西北工业大学应用数学系

出  处:《数学学报(中文版)》2018年第1期27-38,共12页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(11271299)

摘  要:主要研究了拟度量测度空间(X,d,μ)中修正的极大函数,其中X表示集合,μ表示不满足二重性的Borel测度,d表示不满足对称性的拟度量.本文对修正的极大函数建立了弱(1,1)估计和(Ф,Ф)型估计,其中Ф比N函数更一般.作为应用,证明了拟度量测度空间中推广的Lebesgue微分定理.本文的结果也适用于与常系数Kolmogorov型算子对应的Lie群G=(R^N+1,o).We study modified maximal functions in a quasi-metric measure space (X, d, μ), where X is a set, μ stands for the Borel measure which is not doubling, d is a quasi-metric being quasi-symmetric. We establish the weak (1, 1) estimates and (Ф, Ф) type estimates for modified maximal functions, where Ф is more general than N-functions. As applications, we prove a generalized Lebesgue differential theorem in the quasi-metric measure space; the results of this paper can be applied to the Lie group G=(R^N+1,o) associated with the Kolmogorov type operator with constant coefficients.

关 键 词:拟度量测度空间 修正的极大函数 弱(1 1)估计  Ф)型估计 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象