LS-SVM在澜沧江水库群运行调度中的应用研究  

Application of LS-SVM in the Operation and Scheduling of Reservoirs in Lancang River

在线阅读下载全文

作  者:王超[1] 李学辉[1] 杨绍琼 雷旭 吴子怡 谢平[3] 

机构地区:[1]云南省水文水资源局,云南昆明650106 [2]昆明市水文水资源局,云南昆明650103 [3]武汉大学,湖北武汉430071

出  处:《水力发电》2018年第1期77-80,105,共5页Water Power

基  金:国家自然科学基金资助项目(91547205)

摘  要:利用最小二乘支持向量机(LS-SVM)的径流预测方法建立澜沧江月径流预测模型,对月径流进行预测,与季节性水平模型预测结果进行对比,并将预测结果运用于澜沧江水库群调度。结果表明,基于最小二乘支持向量机的模拟预测训练期和预测应用期的模型效率系数分别高达80%和88%,年均最大和最小径流相对误差仅为10%,精度较季节性水平模型更高,说明将最小二乘支持向量机用于澜沧江月径流预测是可行的,可满足澜沧江水库群调度的需要。A monthly runoff prediction model for Lancang River is established by using least squares support vector machine ( LS-SVM). The monthly runoff is predicted and compared with the results of seasonal level model, and the forecast results are applied to the scheduling of reservoirs in Lancang River. The results show that the efficiency coefficients of LS-SVM model are 80% and 88% respectively, and the relative errors of maximum and minimum runoff are all only 10% which is more accurate than seasonal level model. The application of LS-SVA model in monthly runoff prediction of Laneang River is feasible, and the model can meet the needs of the operation and scheduling of reservoirs in Lancang River.

关 键 词:LS-SVM 水库群 调度 澜沧江 

分 类 号:TV124[水利工程—水文学及水资源]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象