miR-219a-5p inhibits breast cancer cell migration and epithelial-mesenchymal transition by targeting myocardin-related transcription factor A  被引量:6

miR-219a-5p inhibits breast cancer cell migration and epithelial-mesenchymal transition by targeting myocardin-related transcription factor A

在线阅读下载全文

出  处:《Acta Biochimica et Biophysica Sinica》2017年第12期1112-1121,共10页生物化学与生物物理学报(英文版)

摘  要:Although many miRNAs are reported to be involved in tumor formation and progression, the effect of miR-219a-5p on breast cancer metastasis is not well-known. The aim of this study is to investi- gate the effect of miR-219a-5p on the migratory ability and epithelial-mesenchymal transition (EMT) of breast cancer cells. First, miR-219a-5p was found to be highly expressed in Iow-invasive breast cancer MCF-7 cells, but lowly expressed in high-invasive breast cancer MDA-MB-231 cells. Wound scratch assay and transwell assay showed that miR-219a-Sp inhibited the migratory ability of MDA-MB-231 cells, miR-219a-5p also suppressed the cellular EMT, confirmed by suppressing the expression of mesenchymal markers vimentin and N-cadherin and increasing the expression of epithelial marker E-cadherin. Using the epithelial-mesenchymal-epithelial model in MCF-7 cells, we confirmed that the level of miR-219a-5p was highly expressed in epithelial-type cells and lowly expressed in mesenchymal-type cells. Importantly, we identified myocardin-related transcription factor A (MRTF-A) as a novel potential target gene of miR-219a-5p. Overexpression of miR-219a-5p in MDA-MB-231 cells could inhibit the expression of MRTF-A as revealed by real-time PCR and western blot analysis, miR-219a-5p inhibited the transcription of MRTF-A by targeting the 3'UTR of MRTF-A, which was confirmed by wild-type or mutant MRTF-A 3'UTR luciferase reporter system. Furthermore, knockdown of MRTF-A using siRNA for MRTF-A could depress breast cell migration. In conclusion, our present study revealed the tumor suppressive role of miR-219a-5p in regulating breast cancer migration by targeting MRTF-A, suggesting that miR-219a-5p might be a therapeutic target in breast cancer through regulating EMT.Although many miRNAs are reported to be involved in tumor formation and progression, the effect of miR-219a-5p on breast cancer metastasis is not well-known. The aim of this study is to investi- gate the effect of miR-219a-5p on the migratory ability and epithelial-mesenchymal transition (EMT) of breast cancer cells. First, miR-219a-5p was found to be highly expressed in Iow-invasive breast cancer MCF-7 cells, but lowly expressed in high-invasive breast cancer MDA-MB-231 cells. Wound scratch assay and transwell assay showed that miR-219a-Sp inhibited the migratory ability of MDA-MB-231 cells, miR-219a-5p also suppressed the cellular EMT, confirmed by suppressing the expression of mesenchymal markers vimentin and N-cadherin and increasing the expression of epithelial marker E-cadherin. Using the epithelial-mesenchymal-epithelial model in MCF-7 cells, we confirmed that the level of miR-219a-5p was highly expressed in epithelial-type cells and lowly expressed in mesenchymal-type cells. Importantly, we identified myocardin-related transcription factor A (MRTF-A) as a novel potential target gene of miR-219a-5p. Overexpression of miR-219a-5p in MDA-MB-231 cells could inhibit the expression of MRTF-A as revealed by real-time PCR and western blot analysis, miR-219a-5p inhibited the transcription of MRTF-A by targeting the 3'UTR of MRTF-A, which was confirmed by wild-type or mutant MRTF-A 3'UTR luciferase reporter system. Furthermore, knockdown of MRTF-A using siRNA for MRTF-A could depress breast cell migration. In conclusion, our present study revealed the tumor suppressive role of miR-219a-5p in regulating breast cancer migration by targeting MRTF-A, suggesting that miR-219a-5p might be a therapeutic target in breast cancer through regulating EMT.

关 键 词:breast cancer cell migration epithelial-mesenchymal transition miR-219a-5p myocardin-related transcription factor A 

分 类 号:Q2[生物学—细胞生物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象