Non-trivially Graded Self-dual Fusion Categories of Rank 4  被引量:2

Non-trivially Graded Self-dual Fusion Categories of Rank 4

在线阅读下载全文

作  者:Jing Cheng DONG Liang Yun ZHANG Li DAI 

机构地区:[1]College of Engineering, Nanjing Agricultural University, Nanjing 210031, P. R. China [2]College of Science, Nanjing Agricultural University, Nanjing 210095, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2018年第2期275-287,共13页数学学报(英文版)

基  金:Supported by the Fundamental Research Funds for the Central Universities(Grant No.KYZ201564);the Natural Science Foundation of China(Grant Nos.11571173,11201231);the Qing Lan Project

摘  要:Let C be a self-dual spherical fusion categories of rank 4 with non-trivial grading. We complete the classification of Grothendieck ring K(C) of C; that is, we prove that K(C) = Fib Z[Z2], where Fib is the Fibonacci fusion ring and Z[Z2] is the group ring on Z2. In particular, if C is braided, then it is equivalent to Fib Vecwz2 as fusion categories, where Fib is a Fibonacci category and Vecwz2 is a rank 2 pointed fusion category.Let C be a self-dual spherical fusion categories of rank 4 with non-trivial grading. We complete the classification of Grothendieck ring K(C) of C; that is, we prove that K(C) = Fib Z[Z2], where Fib is the Fibonacci fusion ring and Z[Z2] is the group ring on Z2. In particular, if C is braided, then it is equivalent to Fib Vecwz2 as fusion categories, where Fib is a Fibonacci category and Vecwz2 is a rank 2 pointed fusion category.

关 键 词:Fusion categories universal grading small rank Frobenius-Perron dimension 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象