检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Institute of Information Engineering, Sanming University, Sanming 365004, China [2]School of Finance and Statistics, East China Normal University, Shanghai 200241, China
出 处:《Acta Mathematicae Applicatae Sinica》2018年第1期51-64,共14页应用数学学报(英文版)
基 金:Supported by the Natural Science Foundation of China(11401341,11271136 and 81530086);111 Project(B14019);Natural Science Foundation of Fujian Province,China(2015J05014,2016J01681 and 2017N0029);Scientific Research Training Program of Fujian Province University for Distinguished Young Scholar(2015);New Century Excellent Talents Support Project of Fujian Province University([2016]23)
摘 要:This paper introduces some Bayesian optimal design methods for step-stress accelerated life test planning with one accelerating variable, when the acceleration model is linear in the accelerated variable or its function, based on censored data from a log-location-scale distributions. In order to find the optimal plan,we propose different Monte Carlo simulation algorithms for different Bayesian optimal criteria. We present an example using the lognormal life distribution with Type-I censoring to illustrate the different Bayesian methods and to examine the effects of the prior distribution and sample size. By comparing the different Bayesian methods we suggest that when the data have large(small) sample size B1(τ)(B2(τ)) method is adopted. Finally, the Bayesian optimal plans are compared with the plan obtained by maximum likelihood method.This paper introduces some Bayesian optimal design methods for step-stress accelerated life test planning with one accelerating variable, when the acceleration model is linear in the accelerated variable or its function, based on censored data from a log-location-scale distributions. In order to find the optimal plan,we propose different Monte Carlo simulation algorithms for different Bayesian optimal criteria. We present an example using the lognormal life distribution with Type-I censoring to illustrate the different Bayesian methods and to examine the effects of the prior distribution and sample size. By comparing the different Bayesian methods we suggest that when the data have large(small) sample size B1(τ)(B2(τ)) method is adopted. Finally, the Bayesian optimal plans are compared with the plan obtained by maximum likelihood method.
关 键 词:accelerated life testing Bayesian approach Gibbs sampling type-I censoring log-location-scale distributions optimal design.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.21