检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:尤涛[1] 李廷峰 杜承烈[1] 钟冬[1] 朱怡安[1]
机构地区:[1]西北工业大学计算机学院,陕西西安710129
出 处:《通信学报》2017年第12期98-108,共11页Journal on Communications
基 金:2017航空科学重点基金资助项目;2016复杂产品智能制造系统技术国家重点实验开放研究基金资助项目~~
摘 要:现有基于规则匹配的数据流预测算法存在前件发生定义不准确、前件相关性未考虑、预测结果描述不严谨等不足,造成预测过程效率较低、精度不高等问题。提出基于前件发生树的概率叠加预测算法,定义区间最小非重叠发生,避免前件的错误匹配;通过前件的合并构建前件发生树,提高前件发生的搜索效率;基于概率叠加的思想计算后件的发生区间和发生概率,使预测精度进一步提高。理论分析和实验结果表明,该算法具有较高的时空效率和预测精度。There are some shortages in the existing rule-based data stream prediction algorithm, such as inaccurate defini- tion of antecedent occurrence, ignoring the correlation between rules and imprecise description of prediction accuracy. These make low forecasting process efficiency and low prediction accuracy. The superposed prediction algorithm was proposed based on antecedent occurrence tree, and interval minimal non-overlapping occurrence was defined to avoid the problem of excessive matching antecedent. The efficiency was improved for searching antecedent's occurrence by merg- ing rule's antecedents in antecedent occurrence tree, and the succedent occurrence based on superposed probability was predicted to enhance prediction accuracy. The theoretical analysis and experimental evaluation demonstrate the algorithm is superior to the existing prediction algorithms in terms of time and space efficiency and prediction accuracy.
关 键 词:数据流 情节规则 区间最小非重叠发生 前件发生树 概率叠加预测
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.154.82