检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机应用》2018年第1期132-136,170,共6页journal of Computer Applications
基 金:高分辨率观测系统重大专项技术研究与开发项目(03-Y20A10-9001-15/16);综合减灾空间信息服务应用示范项目~~
摘 要:可分性指数(SI)可用来选择各类地物的有效分类特征,但在多维特征以及地物可分性较好的情况下,只利用可分性指数进行特征选择不能有效去除特征之间的冗余性。基于此,提出了利用可分性指数并辅以顺序后退(SBS)算法进行特征选择与多层支持向量机(SVM)分类的方法。首先,由各类地物在所有特征下的可分性指数选择分类地物和特征;然后,以该地物的分类精度为评估依据,利用顺序后退法筛选特征;其次,由剩余地物之间的可分性指数和顺序后退法依次选择各类地物的分类特征;最后利用多层SVM进行分类。实验结果表明,与只利用可分性指数选择特征进行多层SVM分类的方法相比,所提方法的分类精度提高了2%,各类地物的分类精度均高于86%,且运行时间为原来方法的一半。Separability Index (SI) can be used to select effective classification features, but in the case of multi- dimensional features and good separability of geology, the use of separability index for feature selection can not effectively remove redundancy. Based on this, a method of feature selection and multi-layer Support Vector Machine (SVM) classification was proposed by using separability index and Sequential Backward Selection (SBS) algorithm. Firstly, the classification object and features were determined according to the Sis of all the ground objects under all the features, and then based on the classification accuracies of the objects, the SBS algorithm was used to select the features again. Secondly, the features of next ground objects were determined by the separability index of remaining objects and the SBS algorithm in turn. Finally, the multi-layer SVM was used for classification. The experimental results show that the classification accuracy of the proposed method is improved by 2% compared with the method of multi-layer SVM classification where features are selected only based on the SI, and the classification accuracy of all kinds of objects is higher than 86%, and the running time is half of the original method.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38