检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽大学计算机科学与技术学院,合肥230601
出 处:《计算机工程与应用》2018年第2期131-136,共6页Computer Engineering and Applications
基 金:国家科技支撑计划(No.2015BAK24B00)
摘 要:在实际工程优化问题中多数问题是多目标优化问题,多目标优化问题一直以来就是智能算法的研究热点。提出一种改进的果蝇优化算法,将其应用在多目标搜索领域,并成功使用该算法解决了一种多目标背包问题。算法在基本果蝇优化算法的基础上采用分群策略和动态半径,在群A中从种群位置开始以动态半径探索新的可行解,在群B中则通过非支配个体之间的交叉操作进行密集搜索。果蝇种群的位置在每一轮迭代产生的非劣解集中进行选取,提高了算法的收敛速度。通过在多个数据集下进行测试,并和粒子群算法、NSGA-2做了对比实验,最终结果显示使用该算法在特定条件下能取得较好的搜索效果,证明了使用果蝇优化算法解决多目标问题的可行性。In the practical engineering optimization problems, most of the problems are multi-objective optimization problem, multi-objective optimization problem is a research hotspot for a long time. This paper proposes a new fruit fly optimization algorithm, and successfully uses the algorithm to solve a multi-objective knapsack problem. The improved fruit fly algorithm uses clustering strategy and dynamic radius. In group A, a new feasible solution is explored from the position of population in the dynamic radius. In group B, it uses the crossover operation between the non dominated individuals. The initial location of the fly population is selected by random in the non dominated solutions. The convergence speed of the algorithm is improved greatly. By testing in multiple data sets with PSO and NSGA-2, the final results show that using the proposed algorithm under certain conditions can take the better search result, which proves the feasibility of using fruit fly optimization algorithm to solve the multi-objective problem.
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222