检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]College of Information Science and Engineering, Northeastern University
出 处:《Chinese Physics B》2018年第1期228-235,共8页中国物理B(英文版)
摘 要:The convergence and stability of a value-iteration-based adaptive dynamic programming (ADP) algorithm are con- sidered for discrete-time nonlinear systems accompanied by a discounted quadric performance index. More importantly than sufficing to achieve a good approximate structure, the iterative feedback control law must guarantee the closed-loop stability. Specifically, it is firstly proved that the iterative value function sequence will precisely converge to the optimum. Secondly, the necessary and sufficient condition of the optimal value function serving as a Lyapunov function is investi- gated. We prove that for the case of infinite horizon, there exists a finite horizon length of which the iterative feedback control law will provide stability, and this increases the practicability of the proposed value iteration algorithm. Neural networks (NNs) are employed to approximate the value functions and the optimal feedback control laws, and the approach allows the implementation of the algorithm without knowing the internal dynamics of the system. Finally, a simulation example is employed to demonstrate the effectiveness of the developed optimal control method.The convergence and stability of a value-iteration-based adaptive dynamic programming (ADP) algorithm are con- sidered for discrete-time nonlinear systems accompanied by a discounted quadric performance index. More importantly than sufficing to achieve a good approximate structure, the iterative feedback control law must guarantee the closed-loop stability. Specifically, it is firstly proved that the iterative value function sequence will precisely converge to the optimum. Secondly, the necessary and sufficient condition of the optimal value function serving as a Lyapunov function is investi- gated. We prove that for the case of infinite horizon, there exists a finite horizon length of which the iterative feedback control law will provide stability, and this increases the practicability of the proposed value iteration algorithm. Neural networks (NNs) are employed to approximate the value functions and the optimal feedback control laws, and the approach allows the implementation of the algorithm without knowing the internal dynamics of the system. Finally, a simulation example is employed to demonstrate the effectiveness of the developed optimal control method.
关 键 词:adaptive dynamic programming (ADP) CONVERGENCE STABILITY discounted quadric performanceindex
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.14