检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东科技大学测绘科学与工程学院海洋测绘系,山东青岛266590 [2]中国科学院声学研究所声场声信息国家重点实验室,北京100190
出 处:《海洋学报》2018年第1期39-46,共8页
基 金:国家自然科学基金(11704225);山东省自然科学基金(ZR2016AQ23);中国科学院声学研究所声场声信息国家重点实验室开放基金(SKLA201704)
摘 要:环境参数失配导致定位性能大幅度下降是匹配场定位所面临的难题之一。应用贝叶斯理论对环境聚焦,是当前解决该难题的研究热点。环境聚焦方法的实质是将未知环境参数和声源位置联合优化估计,当出现多个目标时,估计的参数会随着声源个数成倍增加,因此不得不利用有限的观测信息来实现众多参数的估计。本文采用最大似然比方法,获得信号源谱和误差项的最大似然估计,实现这些敏感性较弱参数的间接反演,有效降低了反演参数维数和定位算法复杂度。针对遗传算法的早熟和稳定性差的问题,改进了似然函数的经验表达式。将多维后验概率密度在参数起伏变化范围内积分,得到反演参数的一维边缘概率分布,求解最优值的同时进行反演结果的不确定性分析。本文仿真了位于相同距离、不同深度的两个声源,使用仿真实验验证了提出算法的有效性。Environmental uncertainty often represents the limiting factor in matched-field localization. Within a Bayesian framework, environmental focalization has been widely applied to solve the augmented localization prob- lem, in which the environmental parameters, source ranges and depths are considered to be unknown variables. However, including environmental parameters in multiple-source localization greatly increases the complexity and computational demands of the inverse problem. It has to estimate lots of unknown parameters by limited observa- tion information. In the approach, the closed-,form maximum-likelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionali- ty and difficulty of the inversion. Genetic algorithms are used for the optimization and all the samples of the param- eter space are used to estimate the a posteriori probabilities of the model parameters. In order to compensate for the precocious disadvantage of genetic algorithm, the likelihood function is expressed as the empirical exponent relation of the cost function. This method integrates the a posterior probability density over environmental parameters to obtain a sequence of marginal probability distributions over source range and depth, from which the most-probable source location and localization uncertainties can be extracted. Examples are presented for multi-frequency localiza- tion of two sources in an uncertain shallow water environment, and a Monte Carlo performance evaluation study is carried out.
分 类 号:P733.2[天文地球—物理海洋学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249