检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程》2018年第1期306-310,316,共6页Computer Engineering
基 金:国家科技重大专项(2015ZX03003011);2015年重庆市物联网产业共性关键技术创新主题专项(cstc2015zdcy-ztzx70007)
摘 要:针对目前基于浅层语法特征和依存句法单特征的汉语韵律层级预测能力较弱的情况,提出一种改进的汉语韵律预测方法。通过从输入文本的依存句法分析结果中自动提取依存句法单特征,并对其中关键特征进行特征融合,得到依存信息融合特征。将依存句法单特征与融合特征进行韵律层级预测实验对比,选取最优的依存特征组合与浅层语法特征相结合,利用决策树C4.5算法实现韵律结构层级的预测。经过大量的语料训练和测试结果表明,依存信息融合特征相比依存句法单特征整体韵律层级的预测准确率均有所提升,相对于浅层语法特征,韵律词和韵律短语的预测准确率分别提高了5.8%和15.4%。Aiming at the weak ability of predicting the prosodic level based on the characteristics of shallow grammar and dependence-based syntactic single feature, this paper proposes an improved Chinese prosodic prediction method. By extracting the dependency syntactic single feature from the dependency parsing results of the input text and integrating key features, the dependent information fusion feature is obtained. The syntactic single feature is compared with the fusion feature through the prosodic hierarchical predictive experiment. The optimal dependence feature combination is combined with the shallow grammar feature,and the C4.5 algorithm is used to predict the prosodic hierarchy. After a lot of corpus training and testing, results show that the prosodic predictions of interdependent information fusion features are better than the predicative ones based on dependency syntax. Compared with rhyme hierarchical law prediction based on shallow grammar features,the accuracy of prosodic word is increased by 5.8% , and the precision of prosodic phrase is increased by 15.4%.
关 键 词:依存句法 融合特征 C4.5算法 语料 韵律词 韵律短语
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49