有源配电网供电域与开关优化选址区间模型  被引量:4

Supply Domain and Interval Model for Switching Devices Optimal Location in Active Distribution Network

在线阅读下载全文

作  者:陈鹏伟 陶顺 肖湘宁 汤广福 

机构地区:[1]新能源电力系统国家重点实验室(华北电力大学),北京市昌平区102206 [2]先进输电技术国家重点实验室(全球能源互联网研究院),北京市昌平区102200

出  处:《中国电机工程学报》2018年第1期97-108,共12页Proceedings of the CSEE

基  金:国家自然科学基金项目(51207051);中央高校基本科研业务费专项资金资助项目(2016XS02)~~

摘  要:为直接描述源一网—荷不确定性条件下有源配电网分布式电源(distributiongeneration,DG)供电能力及其与开关设备最优选址间的匹配关系,该文首先提出了分布式电源供电域的概念,并基于区间规划,建立了用于供电域求解的区间模型。其次,通过对负荷与DG出力的场景聚类与区间参数等效及网络状态建模,将分布式电源供电域推广到有源配电网供电域的区间等效描述。然后就配电网有源化建设与自动化改造问题,基于上述供电域模型,建立了有源配电网开关优化选址双层区间模型,并设计了基于多种群遗传算法的多层嵌套区间模型求解方法。最后,通过基于RBTSBUS6F4系统的有源配电网进行了案例分析,验证了所提供电域模型与开关优化选址模型的有效性及其在适用范围与计算效率上的优越性。In order to directly assess the supply capability of distribution generation (DG) and its matching relationship with the optimal placement of switching devices, based on interval programming, this paper firstly put forward the concept of supply domain for DG, as well as an interval programming model to solve for the domain. Through the scenario clustering and interval equivalent for the load and DG output, followed by the network state modeling, supply domain of DG was extended into the interval equivalent description for the supply domain of the active distribution network with multi-state and multi-scenario. Then aiming at the automation transform and active construction of the traditional distribution network, according to the supply domain model above, a bi-level interval programing model of switching devices optimal location was proposed, as well as a solution method for the bi-level interval model based on multiple population genetic algorithm. The verification results based on RBTS BUS6 F4 system demonstrate the validity and its superiority in the scope of application and computational efficiency.

关 键 词:有源配电网 分布式电源:可靠性 开关优化选址 区间模型 

分 类 号:TM715[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象