Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy  被引量:1

Asymptotic solutions of the flow of a Johnson-Segalman fluid through a slowly varying pipe using double perturbation strategy

在线阅读下载全文

作  者:Xinyin ZOU Xiang QIU Jianping LUO Jiahua LI P.N.KALONI Yulu LIU 

机构地区:[1]School of Mechanical Engineering, Shanghai Institute of Technology [2]School of Science, Shanghai Institute of Technology [3]College of Urban Construction and Safety Engineering, Shanghai Institute of Technology [4]Department of Mathematics and Statistics, University of Windsor [5]Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University

出  处:《Applied Mathematics and Mechanics(English Edition)》2018年第2期169-180,共12页应用数学和力学(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.11572203 and11332006)

摘  要:A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.A double perturbation strategy is presented to solve the asymptotic solutions of a Johnson-Segalman (J-S) fluid through a slowly varying pipe. First, a small parameter of the slowly varying angle is taken as the small perturbation parameter, and then the second-order asymptotic solution of the flow of a Newtonian fluid through a slowly varying pipe is obtained in the first perturbation strategy. Second, the viscoelastic parameter is selected as the small perturbation parameter in the second perturbation strategy to solve the asymptotic solution of the flow of a J-S fluid through a slowly varying pipe. Finally, the parameter effects, including the axial distance, the slowly varying angle, and the Reynolds number, on the velocity distributions are analyzed. The results show that the increases in both the axial distance and the slowly varying angle make the axial velocity slow down. However, the radial velocity increases with the slowly varying angle, and decreases with the axial distance. There are two special positions in the distribution curves of the axial velocity and the radial velocity with different Reynolds numbers, and there are different trends on both sides of the special positions. The double perturbation strategy is applicable to such problems with the flow of a non-Newtonian fluid through a slowly varying pipe.

关 键 词:Johnson-Segalman (J-S) fluid slowly varying pipe double perturbationstrategy velocity distribution 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象