A new streamline diffusion finite element method for the generalized Oseen problem  被引量:1

A new streamline diffusion finite element method for the generalized Oseen problem

在线阅读下载全文

作  者:Chao XU Dongyang SHI Xin LIAO 

机构地区:[1]Faculty of Mathematics and Physics Education, Luoyang Institute of Science and Technology [2]School of Mathematics and Statistics, Zhengzhou University

出  处:《Applied Mathematics and Mechanics(English Edition)》2018年第2期291-304,共14页应用数学和力学(英文版)

基  金:supported by the National Natural Science Foundation of China(Nos.11271340 and11671369)

摘  要:This paper aims to present a new streamline diffusion method with low order rectangular Bernardi-Raugel elements to solve the generalized Oseen equations. With the help of the Bramble-Hilbert lemma, the optimal errors of the velocity and pressure are estimated, which are independent of the considered parameter e. With an interpolation postprocessing approach, the superconvergent error of the pressure is obtained. Finally, a numerical experiment is carried out to confirm the theoretical results.This paper aims to present a new streamline diffusion method with low order rectangular Bernardi-Raugel elements to solve the generalized Oseen equations. With the help of the Bramble-Hilbert lemma, the optimal errors of the velocity and pressure are estimated, which are independent of the considered parameter e. With an interpolation postprocessing approach, the superconvergent error of the pressure is obtained. Finally, a numerical experiment is carried out to confirm the theoretical results.

关 键 词:streamline diffusion method Bernardi-Raugel element Oseen problem superconvergent error estimate 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象