检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南民族大学生物医学工程学院认知科学国家民委重点实验室,武汉430074
出 处:《电子测量与仪器学报》2017年第12期1912-1917,共6页Journal of Electronic Measurement and Instrumentation
基 金:国家自然科学基金(81271659;61773408)资助项目
摘 要:针对当前动态心率测量方法中存在心率监测准确度不高的缺点,提出使用深度学习算法提取光电容积脉搏波(photoplethysmograph,PPG)中的心率值。方法采集了15名身体健康的受试者不同运动速度下的PPG信号,并通过有抗干扰能力的心电(electrocardiogram,ECG)设备同步采集他们的ECG信号,将具有较强干扰的PPG信号作为堆栈自编码(stacked autoencoder,SAE)网络的输入信号,并将ECG信号作为网络标签,然后使用深度学习算法对自编码网络进行训练,以将有较强干扰PPG信号拟合为具有准确心率特征的类正弦波信号,从而实现对运动状态下干扰严重的PPG信号进行心率的提取。将SAE网络输出信号与对应ECG信号进行比较,结果显示,运动心率测量的平均误差为1.1658 bpm,表明深度学习算法对于心率测量的有效性,也为运动心率信号测量提供了一种新的途径。The main disadvantage of currentmethods ofdynamic heart rate measurement is the low accuracy. In order to improve the problem, deep learning algorithm was introduced to extract the photoplethysmograph(PPG) of heart rate value. In this paper, the pulse signals of 15 healthy subjects participated in the experiment was acquired under the different veloeityas the input of stacked auto-encoders network (SAE). At the same time, electrocardiograph (ECG) signal as the label of that network was gathered by a standard ECG collector whichhas high anti-interference. Combining with the deep learning algorithm, SAE was trained, in which the pulse signal with strong interference was fitted to thesignalof sine-like wave with the characteristic of accurate heart rate, in order to realize the extraction of heart rate under the condition of serious disturbance under sports conditions. The experimental results show that compared with the output signal of SAE, the proposed method obtains smaller error value of the heart rate ( 1. 165 8 bpm), which showsthe effectiveness of heart rate measurementusing deep learning algorithm, and provides a new way for the sportiveheart ratemeasurement.
分 类 号:TN29[电子电信—物理电子学] R318.6[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117