机构地区:[1]Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China [2]Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences [3]Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
出 处:《Frontiers in Energy》2017年第4期535-567,共33页能源前沿(英文版)
摘 要:Surface tension plays a core role in dominating various surface and interface phenomena. For liquid metals with high melting temperature, a profound understanding of the behaviors of surface tension is crucial in industrial processes such as casting, welding, and solidification, etc. Recently, the room temperature liquid metal (RTLM) mainly composed of gallium-based alloys has caused widespread concerns due to its increasingly realized unique virtues. The surface properties of such materials are rather vital in nearly all applications involved from chip cooling, thermal energy harvesting, hydrogen generation, shape changeable soft machines, printed electronics to 3D fabrication, etc. owing to its pretty large surface tension of approximately 700 mN/m. In order to promote the research of surface tension of RTLM, this paper is dedicated to present an overview on the roles and mechanisms of surface tension of liquid metal and summarize the latest progresses on the understanding of the basic knowledge, theories, influencing factors and experimental measure- ment methods clarified so far. As a practical technique to regulate the surface tension of RTLM, the fimdamental principles and applications of electrowetting are also interpreted. Moreover, the unique phenomena of RTLM surface tension issues such as surface tension driven self- actuation, modified wettability on various substrates and the functions of oxides are discussed to give an insight into the acting mechanism of surface tension. Furthermore, future directions worthy of pursuing are pointed out.Surface tension plays a core role in dominating various surface and interface phenomena. For liquid metals with high melting temperature, a profound understanding of the behaviors of surface tension is crucial in industrial processes such as casting, welding, and solidification, etc. Recently, the room temperature liquid metal (RTLM) mainly composed of gallium-based alloys has caused widespread concerns due to its increasingly realized unique virtues. The surface properties of such materials are rather vital in nearly all applications involved from chip cooling, thermal energy harvesting, hydrogen generation, shape changeable soft machines, printed electronics to 3D fabrication, etc. owing to its pretty large surface tension of approximately 700 mN/m. In order to promote the research of surface tension of RTLM, this paper is dedicated to present an overview on the roles and mechanisms of surface tension of liquid metal and summarize the latest progresses on the understanding of the basic knowledge, theories, influencing factors and experimental measure- ment methods clarified so far. As a practical technique to regulate the surface tension of RTLM, the fimdamental principles and applications of electrowetting are also interpreted. Moreover, the unique phenomena of RTLM surface tension issues such as surface tension driven self- actuation, modified wettability on various substrates and the functions of oxides are discussed to give an insight into the acting mechanism of surface tension. Furthermore, future directions worthy of pursuing are pointed out.
关 键 词:surface tension liquid metal soft machine printed electronics ELECTROWETTING self-actuation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...